微线段齿轮系统动力学特性分析

黄康 汪涛

振动与冲击 ›› 2018, Vol. 37 ›› Issue (2) : 248-253.

PDF(1509 KB)
PDF(1509 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (2) : 248-253.
论文

微线段齿轮系统动力学特性分析

  • 黄康 汪涛
作者信息 +

Dynamic features of a micro-segment Gear system

  • HUANG Kang, WANG Tao
Author information +
文章历史 +

摘要

本文利用有限元法求出了微线段齿轮的时变啮合刚度,考虑微线段齿轮齿廓的特殊性,建立了单自由度微线段齿轮传动系统的动力学模型,模型中考虑了综合误差、时变啮合刚度以及齿侧间隙。通过数值仿真分析了比对两种齿轮系统在不同转速、载荷下的动力学响应,并指出了系统的亚谐共振及其幅值跳跃特性。对比分析了两种齿轮的分叉特性,结果表明,微线段齿轮相比普通渐开线齿轮具有更好的稳定性,其系统的混沌转速区间小,在中高速重载时其系统振动幅值小,传动更加平稳。

Abstract

Here, the time-varying meshing stiffness of a micro-segment gear pair was calculated by using the finite element method. Considering the particularity of a micro-segment gear’s tooth profile, a 1-DOF dynamic model for a micro-segment gear transmission system was built considering comprehensive error, time-varying meshing stiffness and backlash. Through numerical simulation, dynamic responses of a micro-segment gear system and a conventional gear system were analyzed contrastively under different rotating speeds and loads. There were sub-harmonic resonances, amplitude jumping feature, and bifurcation characteristics in the two systems. The studying results indicated that the micro-segment gear system has a better stability and a smaller chaotic rotating speed range than the conventional gear system does; the micro-segment gear system has a smaller vibration amplitude and its transmission is more stable under heavy load and medium-high rotating speeds.

关键词

非线性动力学 / 微线段齿轮 / 分叉 / 混沌

Key words

nonlinear dynamics / micro-segments gear / bifurcation / chaos

引用本文

导出引用
黄康 汪涛. 微线段齿轮系统动力学特性分析[J]. 振动与冲击, 2018, 37(2): 248-253
HUANG Kang, WANG Tao. Dynamic features of a micro-segment Gear system[J]. Journal of Vibration and Shock, 2018, 37(2): 248-253

参考文献

[1] 李润方, 王建军. 齿轮系统动力学-振动, 冲击, 噪声[M]. 北京: 科学出版社, 1997.
[2] Parker R G, Vijayakar S M, Imajo T. Non-linear dynamic response of a spur gear pair: modelling and experimental comparisons[J]. Journal of sound and vibration, 2000, 237(3): 435-455.
[3] Vaishya M, Singh R. Strategies for modeling friction in gear dynamics[J]. Journal of Mechanical Design, 2003, 125(2): 383-393.
[4] 陈思雨, 唐进元, 王志伟,等. 修形对齿轮系统动力学特性的影响规律[J]. 机械工程学报, 2014, 50(13):59-65.
Chen S. Effect of Modification on Dynamic Characteristics of Gear Transmissions System[J]. Journal of Mechanical Engineering, 2014, 50(13):59-65.
[5] 李发家, 朱如鹏, 鲍和云, 等. 高重合度与低重合度齿轮系统动力学分岔特性对比分析[J]. 中南大学学报 (自然科学版), 2015, 2: 013.
Fajia L I, Zhu R, Bao H, et al. Contrastive analysis of dynamic bifurcation characteristics between high contact ratio and low contact ratio gears system[J]. Zhongnan Daxue Xuebao, 2015, 46(2):465-471.
[6] 常乐浩, 刘更, 吴立言. 齿轮综合啮合误差计算方法及对系统振动的影响[J]. 机械工程学报, 2015, 51(1): 123-130.
 Chang L. Determination of Composite Meshing Errors and Its Influence on the Vibration of Gear System[J]. Journal of Mechanical Engineering, 2015, 51(1).
[7] 赵韩, 梁锦华. 微线段齿廓的形成原理及特性[J]. 机械工程学报, 1997(5):7-11.
   Zhao H. CONSTRUCTING PRINCIPLE AND FEATURES OF TOOTH PROFILES WITH MICRO-SEGMENTS[J]. Chinese Journal of Mechanical Engineering, 1997, 33(5):7-11.
[8] Komori T, Ariga Y, Nagata S. A new gears profile having zero relative curvature at many contact points (Logix Tooth Profile)[J]. Journal of Mechanical Design, 1990, 112(3): 430-436.
[9] Xianying F, Aiqun W, Lee L. Study on the design principle of the LogiX gear tooth profile and the selection of its inherent basic parameters[J]. The International Journal of Advanced Manufacturing Technology, 2004, 24(11-12): 789-793.
[10] 黄康, 赵韩. 微线段齿轮与渐开线齿轮的弯曲强度比较分析[J]. 农业机械学报, 2001, 32(1): 115-117.
 Huang Kang, Zhao Han. Research on bending strength on micro-segment gear compared with involute gear[J]. Transactions of the Chinese Society of  Agricultural Machinery,2001,32(1):115-117.
[11] 黄康, 赵韩, 蒋小兵. 微线段齿轮与渐开线齿轮传动效率对比试验研究[J]. 机械传动, 2002, 26(4):3-6.
 Huang K. The Efficiency Comparisonal Test Research on Micro-segments Gear and Involute Gear[J]. Journal of Mechanical Transmission, 2002, 26(4):3-6.
[12] 黄康, 赵韩, 田杰. 微线段齿轮与渐开线齿轮温升对比实验研究[J]. 中国机械工程, 2006, 17(18):1880-1883.
Kang H, Han Z, Tian Jie. Experimental Research on Temperature Rise Comparison between Micro-segment Gear and Involute Gear[J]. China Mechanical Engineering, 2006, 17(18):1880-1883.
[13]刘鹏, 赵韩, 黄康,等. 基于势能法的微线段齿轮啮合刚度模型研究[J]. 应用力学学报, 2015(6).
[14] Yongjun Shen, Shaopu Yang, Xiandong Liu. Nonlinear dynamics of a spur gear pair with time-varying stiffness and backlash based on incremental harmonic balance method[J]. International Journal of Mechanical Sciences, 2006, 48(11):1256-1263.
[15] Lin J, Parker R G. Mesh stiffness variation instabilities in two-stage gear systems[J]. Journal of vibration and acoustics, 2002, 124(1): 68-76.
[16] 常乐浩. 平行轴齿轮传动系统动力学通用建模方法与动态激励影响规律研究[D]. 西北工业大学, 2014.
[17] 孙涛. 行星齿轮系统非线性动力学研究[D]. 西北工业大学, 2000.
[18] Xu L, Lu M W, Cao Q. Bifurcation and chaos of a harmonically excited oscillator with both stiffness and viscous damping piecewise linearities by incremental harmonic balance method[J]. Journal of sound and vibration, 2003, 264(4): 873-882.
[19] 杨绍普, 申永军, 刘献栋. 基于增量谐波平衡法的齿轮系统非线性动力学[J]. 振动与冲击, 2005, 24(3): 40-42.
Yang S. NONLINEAR DYNAMICS OF GEAR SYSTEM BASED ON INCREMENTAL HARMONIC BALANCE METHOD[J]. Zhendong Yu Chongji/journal of Vibration & Shock, 2005, 24(3):40-42.
[20]苏程, 尹朋朋. 齿轮系统非线性动力学特性分析[J]. 中国机械工程, 2011, 22(16):1922-1928.
Su C, Yin P. Analysis of Nonlinear Dynamics in a Spur Gear Pair System[J]. Zhongguo Jixie Gongcheng/china Mechanical Engineering, 2011, 22(16):1922-1928.
[21]Lau S L, Zhang W S. Nonlinear Vibrations of Piecewise-Linear Systems by Incremental Harmonic Balance Method[J]. Journal of Applied Mechanics, 1992, 59(1):153-160.
[22] Kahraman A, Singh R. Non-linear dynamics of a spur gear pair[J]. Journal of Sound & Vibration, 1990, 142(1):49-75.
 

PDF(1509 KB)

Accesses

Citation

Detail

段落导航
相关文章

/