将桩土系统划分为数量足够多的微元层,基于复刚度传递多圈层平面应变模型,求得了桩侧土对桩身的剪切刚度。采用Voigt体模拟桩周土与相邻微元桩段交界面上环形截面的作用,求得了弹簧和粘壶系数。通过拉普拉斯变换,结合相邻微元桩段交界面上的位移连续和应力平衡条件,得到了修正的阻抗函数递推法。通过求解微元桩段的动力平衡方程,结合修正的阻抗函数递推法,求得了桩顶的阻抗函数。将本文解与已有解进行对比,进一步验证了的楔形桩承载性能的优越性。在桩基动力设计所关心的低频范围内,通过参数分析研究了桩周土的竖向作用与施工扰动效应的耦合作用。
Abstract
Discretizing a pile-soil system into many enough micro-element spheres, based on the multi-sphere planar strain model for complex stiffness transfer, the complex shear stiffness of the surrounding soil to the pile was derived. The vertical action of the surrounding soil on the adjacent pile micro-elements’ interface annular sections was simplified as a Voigt model, its spring and damper coefficients were derived. Then through Laplace transformation, combining the displacement continuity conditions and stress equilibrium ones on interfaces of adjacent pile micro-elements, the amended impedance function transfer method was deduced. Through solving dynamic equilibrium equations of pile micro-elements, combining the amended impedance function transfer method, the impedance function at the pile top was obtained. By comparing the solutions gained here with the published ones, the advantages of a tapered pile’s load-bearing ability were verified. Finally, a parametric analysis was conducted to study the interaction between the vertical action of surrounding soil and construction disturbance effect in low-frequency range. The results provided a guiding for aseismic design of pile foundations.
关键词
楔形桩 /
桩周土竖向作用 /
施工扰动 /
修正的阻抗函数递推法
{{custom_keyword}} /
Key words
tapered pile /
vertical action of surrounding soil /
construction disturbance /
amended impedance function transfer method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Wei J Q, HESHAM M. Experimental study of axial behaviour of tapered piles[J]. Canadian Geotechnical Journal, 1998, 35(4): 641-654.
[2] EI NAGGAR M H, MOHAMMED S. Evaluation of axial performance of tapered piles from centifuge tests[J]. Canadian Geotechnical Journal, 2000, 37(6): 1295-1308.
[3] MOHAMMED S, EI NAGGAR M H, MONCEF N. Load transfer of fiber-reinforced polymer(FRP) composite tapered piles in dense sand[J]. Canadian Geotechnical Journal, 2004, 41(1): 70-95.
[4] KODIKARA J K, MOORE I D. Axial response tapered piles in cohesive frictional ground[J]. Journal of Geotechnical and Geoenvironmental Enginnering, 1993, 1991(4): 675-693.
[5] EI NAGGAR M H, WEI J Q. Uplift behavior of tapered piles established from model tests[J]. Canadian Geotechnical Journal, 2000, 31(7): 56-74.
[6] TAKE W A, WALSANGKAR A J. The elastic analysis of compressible tin-piles and pile groups[J]. Geotechnique, 2002, 31(4): 456-474.
[7] MOHAMEDZEIN Y E, MOHAMED M G. Finite analysis of axially tin-pile groups[J]. Computers and Geotechnics, 2001, 26(2): 231-243.
[8] 蔡燕燕,俞缙,郑春婷,戚志博,等. 楔形桩桩顶振动阻抗的解析解[J]. 岩土工程学报,2011,33(增2): 392-398.
CAI Yan-yan, YU Jin, ZHENG Chun-ting, QI Zhi-bo. Analytical solution for longitudinal dynamic complex impedance of tapered pile[J]. Chinese Journal of Geotechical Engineering, 2011, 33(Supp.2): 392-398.
[9] 吴文兵,王奎华,武登辉,马伯宁. 考虑横向惯性效应时楔形桩纵向振动阻抗研究[J]. 岩土力学与工程学报,2011,30(增2):3618-3625.
WU Wenbing, WANG Kuihua, WU Denghui, MA Boning. Study of Dynamic Longitudinal Impedance of Tapered Pile Considering Lateral Inertial Effect. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Supp. 2): 3618-3625.
[10] 吴文兵,谢帮华,黄生根,徐学连. 考虑挤土效应时楔形桩纵向振动阻抗研究[J]. 地震工程学报,2015,37(4): 1042-1047.
WU Wen-bing, XIE Bang-hua, HUANG Sheng-gen, XU Xue-Lian. Vertical Dynamic Impedance of Tapered Piles Considering Compacting Effects. China Earthquake Engineering Journal, 2015, 374(4):1042-1047.
[11] Wen-Bing Wu, Guo-Sheng Jiang, Shu-Hui LÜ, ShengGen Huang&Bang-Hua Xie. Torsional Dynamic Impedance of a Tapered Pile Considering its Construction Disturbance Effect[J]. Marine Georesources&Geotechnology, 2016, 34(4): 321-330.
[12] 龚晓南,李向红. 静力压桩挤土效应中的若干力学问题[J]. 工程力学,2000,17(4): 7-13.
GONG Xiao-nan, LI Xiang-hong. Several Mechanical Problems in Compacting Effects of Static Piling in Soft Clay Ground [J]. Engineering Mechanics, 2000, 17(4) : 7-13.
[13] 徐建平,周健,许朝阳,等.沉桩挤土效应的模型试验研究[J]. 岩土力学,2000,21(3):235-238.
XU Jian-ping, ZHOU Jian, XU Chao-yang, et al. Model Test Research on Pile Driving Effect of Squeezing Against Soil[J]. Rock and Soil Mechanics, 2000, 21(3):235-238.
[14] 王奎华,杨冬英,张智卿.基于复刚度传递多圈层平面应变模型的桩动力响应研究[J].岩石力学与工程学报,2008,27(4):825-831.
WANG Kui-hua, YANG Dong-ying, ZHANG Zhi-qing. Study on Dynamic Response of Pile Based on Complex Stiffness Transfer Model of Radial Multizone Plane Strain[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(4):825-831.
[15] Lysmer J, Richart FE. Dynamic response of footings to vertical loading[J]. Geotechnical Special Publication, 1966, 92(118): 1091-1117.
[16] M Novak. Dynamic Stiffness and Damping of Piles[J]. Canadian Geotechnical Journal, 1974, 11(4):574-598.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}