钢筋混凝土梁抗冲击性能研究的细观数值模拟方法

金 浏,徐建东,张仁波,杜修力

振动与冲击 ›› 2018, Vol. 37 ›› Issue (2) : 57-65.

PDF(3227 KB)
PDF(3227 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (2) : 57-65.
论文

钢筋混凝土梁抗冲击性能研究的细观数值模拟方法

  • 金 浏,徐建东,张仁波,杜修力
作者信息 +

A mesoscale numerical simulation method for anti-impact performance of RC beams

  • JIN Liu, XU Jiandong, ZHANG Renbo, DU Xiuli
Author information +
文章历史 +

摘要

为更真实地描述钢筋混凝土梁在冲击荷载作用下复杂的破坏过程,结合混凝土细观结构非均质性,假定混凝土是由骨料颗粒、砂浆基质以及界面过渡区(ITZ)组成的三相复合材料,考虑混凝土细观组分的率效应,将钢筋网嵌入至素混凝土梁,建立了钢筋混凝土梁抗冲击力学行为研究的三维细观尺度数值模型。基于该数值分析模型与方法,研究了落锤速度对钢筋混凝土梁抗冲击性能的影响规律。将本文的细观数值模拟结果与宏观模型结果以及已有试验结果进行了对比分析,包括破坏模式、冲击力、跨中位移以及支座反力等,发现模拟结果与试验结果吻合良好,验证了细观数值分析模型在钢筋混凝土梁抗冲击性能模拟中运用的可行性。

Abstract

To describe the complex failure process of reinforced concrete (RC) beams subjected to impact loading accurately, a mesoscale numerical analysis method was established to explore the anti-impact performance of a RC beam considering concrete heterogeneity, strain rate effect of concrete meso components, concrete being assumed as a 3-phase composite composed of aggregate particles, mortar matrix and interfacial transition zones (ITZs), and a web reinforcement being embedded into the plain concrete beam. Using the proposed simulation method, effects of dropping hammer velocity on anti-impact performance of a RC beam were investigated. The simulation results including failure modes, impact loading, mid-span deflection and support reaction were compared with those of the macro-scale simulation results and the published test results. It was shown that the simulation results agree well with those of tests; the proposed meso-scale numerical model and method are feasible for simulating anti-impact performance of RC beams.

关键词

钢筋混凝土梁 / 三维细观数值模型 / 冲击荷载 / 率效应 / 冲击性能

Key words

RC beam / 3D mesoscopic simulation model / impact loads / strain rate effect / anti-impact performance

引用本文

导出引用
金 浏,徐建东,张仁波,杜修力. 钢筋混凝土梁抗冲击性能研究的细观数值模拟方法[J]. 振动与冲击, 2018, 37(2): 57-65
JIN Liu, XU Jiandong, ZHANG Renbo, DU Xiuli. A mesoscale numerical simulation method for anti-impact performance of RC beams[J]. Journal of Vibration and Shock, 2018, 37(2): 57-65

参考文献

[1] Kishi N, Mikami H, Matsuoka K G, et al. Impact behavior of shear-failure-type RC beams without shear rebar[J]. International Journal of Impact Engineering, 2002, 27(9): 955-968.
[2] Fujikake K, Li B, Soeun S. Impact response of reinforced concrete beam and its analytical evaluation[J]. Journal of Structural Engineering, 2009, 135(8): 938-950.
[3] 许斌,曾翔. 冲击荷载作用下钢筋混凝土梁性能试验研究[J]. 土木工程学报, 2014, 47(2): 41-51.
Xu Bin, Zeng Xiang. Experimental study on the behaviors of reinforced concrete beams under impact loadings[J]. China Civil Engineering Journal, 2014, 47(2): 41-51.
[4] 窦国钦, 杜修力, 李亮. 冲击荷载作用下高强钢筋混凝土梁性能试验[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(12): 1072-1080.
Dou Guoqin, Du Xiuli, Li Liang. Experimental study on the behavior of high strength reinforced concrete beams under impact load[J]. Journal of Tianjin University (Science and Technology), 2014, 47(12): 1072-1080.
[5] 方秦, 吴平安. 爆炸荷载作用下影响RC梁破坏形态的主要因素分析[J]. 计算力学学报, 2003, 48(1): 39-42.
Fang Qin,Wu Pingan. Analysis of the main factors affecting the failure mode of RC beams under blast loading[J]. Chinese Journal of Computational Mechanics, 2003, 48(1): 39-42.
[6] 廖维张, 张伟, 田志敏. 高强钢绞线网-高性能砂浆加固钢筋混凝土梁抗冲击性能试验研究[J]. 振动与冲击, 2014, 33(12): 200-206.
Liao Weizhang, Zhang Wei, Tian Zhimin. Tests for impact resistance properties of RC beams strengthened with high strength steel wire mesh and high performance mortar [J]. Journal of Vibration and Shock, 2014, 33(12): 200-206.
[7] Cotsovos D M. Behavior of RC beams subjected to high rates of concentrated loading [J]. Journal of Structural Engineering, 2008, 134(12): 1839-1851.
[8] Saatci S, Vecchio F J. Nonlinear Finite Element Modeling of Reinforced Concrete Structures under Impact Loads[J]. ACI Structural Journal, 2009, 106(5): 717-725.
[9] Travaš V, Ožbolt J, Kožar I. Failure of plain concrete beam at impact load: 3D finite element analysis [J]. International Journal of Fracture, 2009, 160(1): 31-41.
[10] 康翔杰,刘艳辉,许浒,等. 低速冲击碰撞有限元分析中混凝土动态破坏面修正方法[J]. 工程力学, 2016, 33(3): 135-142.
Kang Xiangjie, Liu Yanhui, Xu Hu, et al. A modified method for defining concrete dynamic failure surface under low-speed impact finite element analysis[J]. Engineering Mechanics, 2016, 33(3): 135-142.
[11] 姜华,贺拴海,王君杰. 钢筋混凝土梁冲击试验数值模拟研究[J]. 振动与冲击. 2012, 31(15): 140-145.
Jiang Hua, He Shuanhai, Wang Junjie. Numerical simulation of the impact test of reinforced concrete beams[J]. Journal of Vibration and Shock, 2012, 31(15): 140-145.
[12] Jiang H, Wang X, He S. Numerical simulation of impact tests on reinforced concrete beams[J]. Materials and Design, 2012, 39: 111-120.
[13] 杜修力,韩亚强,金浏,张仁波. 骨料空间分布对混凝土压缩强度及软化曲线影响统计分析[J]. 水利学报, 2015, 46(6): 631-639.
Du Xiuli, Han Yaqiang, Jin Liu, Zhang Renbo. The spatial distribution of aggregate concrete compressive strength and softening curve statistical analysis[J]. Journal of Hydraulic Engineering, 2015, 46(6): 631-639.
[14] Huang YJ, Yang ZJ, Chen XW, Liu GH. Monte carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images [J]. International Journal of Impact Engineering, 2016, 97: 102-115.
[15] Yan P, Zhang JH, Fang Q, Zhang YD, Fan JY. 3D numerical modelling of solid particles with randomness in shape considering convexity and concavity [J]. Powder Technology, 2016, 301: 131-140.
 [16] 金浏,杜修力. 钢筋混凝土构件细观数值模拟分析[J]. 水利学报, 2012, 43(10): 1230-1236.
JIN Liu, DU Xiuli. Meso numerical simulation of reinforced concrete members [J]. Journal of Hydraulic Engineering, 2012, 43(10): 1230-1236.
[17] Zhou XQ, Hao H. Mesoscale modeling of concrete tensile failure mechanism at high strain rates [J]. Computers and Structures, 2008, 86(21/22): 2013-2026.
[18] Du Xiuli, Jin Liu, Ma Guowei. Numerical simulation of dynamic tensile-failure of concrete at meso-scale [J]. International Journal of Impact Engineering, 2014, 66: 5-17.
[19] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures [J]. ASCE Journal of Engineering Mechanics, 1998, 124(8): 892-900.
[20] Grote D L, Park S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization [J]. International Journal of Impact Engineering, 2001, 25(9): 869-886.
[21] Bischoff PH, Perry SH. Compressive behavior of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425-450.
[22] Zhao H, Gary G. On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains [J]. International Journal of Solids and Structures, 1996, 33(23): 3363-3375.
[23] Comite Euro-International D B. CEB-FIP model code 1990[S]. Trowbridge, Wiltshire, UK: Redwood Books, 1993.
[24] Malvar L J, Ross C A. Review of strain rate effects for concrete in tension [J]. ACI Materials Journal, 1998, 95(6): 735-739.
[25] 田力,朱聪,王浩,等. 碰撞冲击荷载作用下钢筋混凝土柱的动态响应及破坏模式[J]. 工程力学, 2013(2): 150-155.
Tian Li, ZhuCong, Wang Hao, et al. Dynamic response and failure modes of RC columns under impact [J]. Engineering Mechanics, 2013(2): 150-155.
[26] 李敏,李宏男. 建筑钢筋动态试验及本构模型[J]. 土木工程学报, 2010, 43(4): 70-75.
Li Min, LI Hongnan. Dynamic test and constitutive model for rein forcing steel [J]. China Civil Engineering Journal, 2010, 43(4): 70-75.
[27] Experimental and numerical studies on the response of quadrangular stiffened plates. Part I: subjected to uniform blast load [J]. International Journal of Impact Engineering, 2005, 31(1): 55-83.
[28] Bhatti A Q, Kishi N, Mikami H, et al. Elasto-plastic impact response analysis of shear-failure-type RC beams with shear rebars [J]. Materials and Design, 2009, 30(3): 502-510.
[29] Huang Y, Yan D, Yang Z, et al. 2D and 3D homogenization and fracture analysis of concrete based on in-situ X-ray Computed Tomography images and Monte Carlo simulations[J]. Engineering Fracture Mechanics, 2016, 163: 37-54.

PDF(3227 KB)

315

Accesses

0

Citation

Detail

段落导航
相关文章

/