基于Gibbs抽样的结构时域载荷识别

王婷 1,万志敏 2,郑伟光 2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (2) : 85-90.

PDF(1049 KB)
PDF(1049 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (2) : 85-90.
论文

基于Gibbs抽样的结构时域载荷识别

  • 王婷 1 ,万志敏 2,郑伟光 2
作者信息 +

Structural dynamic load identification in time domain based on Gibbs sampling

  • WANG Ting 1   WAN Zhimin 2  ZHENG Weiguang 2
Author information +
文章历史 +

摘要

载荷识别的病态问题往往采用正则化技术处理,不过传统正则化方法所选取的正则化参数是恒定不变的,导致识别出的载荷精度不是很高。本文提出了基于Gibbs抽样的结构时域载荷识别方法,将未知载荷和测量噪声假设为随机变量,建立了载荷识别的多层贝叶斯模型,采用Gibbs抽样法获得载荷的后验值。相比于传统正则化方法,该法具有本征的自适应正则化性能。数值结果表明,该法可提高载荷识别精度,自适应的正则化参数具有良好的优越性。

Abstract

The regularization technique is often employed to deal with the ill-posed problem of load identification. However, regularization parameters obtained with the traditional regularization technique are constant. Here, a novel approach of load identification in time domain based on Gibbs sampling method was proposed to assume unknown loads and measurement noise to be stochastic variables. The hierarchical Bayesian model of load identification was built. Gibbs sampling was adopted to obtain the posterior probability density distributions of the identified loads. Numerical simulations were performed to demonstrate the effectiveness of the proposed method by comparing the simulated results using this method with those using Tikhonov regularization method based on L-curve and GCV criterion.
 

关键词

载荷识别 / 贝叶斯 / Gibbs抽样 / 正则化技术

Key words

load identification / Bayesian / Gibbs sampling / regularization technique

引用本文

导出引用
王婷 1,万志敏 2,郑伟光 2. 基于Gibbs抽样的结构时域载荷识别[J]. 振动与冲击, 2018, 37(2): 85-90
WANG Ting 1 WAN Zhimin 2 ZHENG Weiguang 2. Structural dynamic load identification in time domain based on Gibbs sampling[J]. Journal of Vibration and Shock, 2018, 37(2): 85-90

参考文献

[1] Inoue H, Harrigan JJ, Reid SR. Review of inverse analysis for indirect measurement of impact force [J]. Applied Mechanics Reviews, 2001, 54(6): 503-524.
 [2] 孙兴盛,刘杰,丁飞,等. 基于矩阵摄动的随机结构动态载荷识别技术[J]. 机械工程学报, 2014, 50(13): 148-156.
    SUN Xing-sheng, LIU jie, DING Fei, et al. Identification method of dynamic loads for stochastic structures based on matrix perturbation theory [J]. Journal of Mechanical Engineering, 2014, 50(13): 148-156.
 [3] 杨智春,贾有. 动载荷的识别方法[J]. 力学进展, 2015, (00): 29-54.
    YANG Zhi-chun, JIA You. The identification of dynamic loads [J]. Advances in Mechanics, 2015, (00): 29-54.
 [4] 朱涛,肖守讷,阳光武. 一种新的时域动态载荷识别方法 [J]. 西南交通大学学报, 2012, 47(6): 968-973.
    ZHU Tao, XIAO Shou-ne, YANG Guang-wu. A new time domain method for force identification [J]. Journal of Southwest Jiaotong University, 2012, 47(6): 968-973.
[5] 徐菁,张方,姜金辉,等. 基于拟静态初值的载荷识别数值修正算法[J]. 振动与冲击, 2016, 35(2): 39-44.
   XU Jing, ZHANG Fang, JIANG Jin-hui, et al. Numerical correcting algorithm for load identification based on quasi-static initial value [J]. Journal of Vibration and Shock, 2016, 35(2): 39-44.
 [6] Law SS, Fang YL. Moving force identification: optimal state estimation approach [J]. Journal of Sound and Vibration, 2001, 239(2): 233-254.
 [7] Mao YM, Guo XL, Zhao Y. A state space force identification method based on Markov parameters precise computation and regularization technique [J]. Journal of Sound and Vibration, 2010, 329(15): 3008-3019.
 [8] 马超,华宏星. 正则化技术在状态空间载荷识别中的应用 [J]. 振动. 测试与诊断, 2014, 34(6): 1154-1158.
    MA Chao, HUA Hong-xing. State space force identification based on regularization technique [J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(6): 1154-1158.
[9] 马超,华宏星. 基于改进正则化方法的状态空间载荷识别技术[J]. 振动与冲击, 2015, 34(11): 146-149.
   MA Chao, HUA Hong-Xing. State space load identification technique based on an improved regularized method [J]. Journal of Vibration and Shock, 2015, 34(11): 146-149.
 [10] 刘杰. 动态载荷识别的计算反求技术研究[D]. 长沙:湖南大学, 2011.
 [11] Zhang E, Antoni J, Feissel P. Bayesian force reconstruction with an uncertain model [J]. Journal of Sound and Vibration, 2012, 331(4): 798-814.
[12] Hastings WK. Monte Carlo sampling methods using Markov chains and their applications [J]. Biometrika, 1970, 57(1): 97-109.
[13] Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,1984, (6): 721-741.
[14] Gilks WR. Introducing Markov chain Monte Carlo, Markov Chain Monte Carlo in Practice [M] (eds. WR Gilks, S. Richardson and DJ Spiegelhalter), 1—19. Chapman & Hall, London, 1996.

PDF(1049 KB)

623

Accesses

0

Citation

Detail

段落导航
相关文章

/