弯扭耦合共振式振动时效的参激稳定性分析

蔡敢为1,黄院星2,黄逸哲1,李俊明3

振动与冲击 ›› 2018, Vol. 37 ›› Issue (20) : 101-108.

PDF(1930 KB)
PDF(1930 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (20) : 101-108.
论文

弯扭耦合共振式振动时效的参激稳定性分析

  • 蔡敢为1,黄院星2,黄逸哲1,李俊明3
作者信息 +

Stability analysis of parameter excitation using coupled lateral and torsional vibrations for reduction of residual stress

  • CAI Ganwei1,HUANG Yuanxing2,HUANG Yizhe1,LI Junming3
Author information +
文章历史 +

摘要

研究弯扭耦合共振消减转轴的残余应力的动力稳定性,首先对转子-轴承系统进行有限元离散,建立动力学模型。然后,对转子-轴承系统进行模态分析,得到合适的阵型。最后,根据共振条件在共振转速之下用Newmark法求得转轴受到扭转振动激励的弯扭耦合位移响应和动应力响应,分析了转轴弯扭耦合共振特性。当转轴从零转速上升到耦合共振转速的过程中,通过Floquet稳定性理论和Poincaré法对参数激励系统进行周期稳定性分析。研究结果表明,弯扭耦合振动时效过程中的耦合动力特性明显,且振动是稳定的,对弯扭耦合共振理论应用于振动时效领域有一定的参考价值。

Abstract

The paper deals with the dynamic characteristics and stability of vibratory stress relief for shaft part using coupled lateral and torsional vibrations.The dynamic equation of rotor-bearing system was established by the finite element method.The appropriate modal was obtained by the modal analysis.According to the resonance condition, the lateral response, torsional response and dynamic stress response of the rotating shaft subjected to torsional excitation were obtained by the Newmark method.The resonant characteristics of coupled vibration were analyzed.Based on the transient analysis, the periodic stability of the parametric system was analyzed by the Floquet stability theory and the Poincaré method during the rotational speed raised from zero to the coupling resonant speed.The results show that the coupled dynamic characteristics of the vibratory stress relief process using coupled lateral and torsional vibrations are obvious, and the vibration is stable, which have reference value for the application of vibratory stress relief.
 

关键词

弯扭耦合共振 / 振动时效 / 动力特性 / 稳定性

Key words

 coupled lateral and torsional vibrations / vibratory stress relief / stability

引用本文

导出引用
蔡敢为1,黄院星2,黄逸哲1,李俊明3. 弯扭耦合共振式振动时效的参激稳定性分析[J]. 振动与冲击, 2018, 37(20): 101-108
CAI Ganwei1,HUANG Yuanxing2,HUANG Yizhe1,LI Junming3. Stability analysis of parameter excitation using coupled lateral and torsional vibrations for reduction of residual stress[J]. Journal of Vibration and Shock, 2018, 37(20): 101-108

参考文献

[1] 饶德林, 朱政强, 葛景国,等. 振动时效消除拼焊不锈钢板的残余应力[J]. 振动与冲击, 2005, 24(2):140-142.
RAO De-lin, ZHU Zheng-qiang, GE jing-guo, et al, Journal of Vibration and Shock [J]. 2005, 24(2):140-142.
[2] 蒋刚. 高频振动时效消除焊接残余应力的仿真及实验研究[D]. 浙江大学, 2007.
Gang Jiang. Simulation and Experimental Research on Welding Residual Stress Reliving by High Frequency Vibratory Stress Relief Technology[D]. Zhejiang University, 2007.
[3] 蔡敢为, 黄院星, 张林,等. 一种交变扭矩激发横扭耦合共振振动时效方法[P].中国专利:ZL 2013 1 0692831.5, 2016.
Ganwei Cai,Yuanxing Huang, Lin Zhang. A vibratory stress relief method using coupled lateral-torsional vibration subjected to alternating torque excitation [P], China patent, ZL201310692831.5, 2016.
[4] 袁清平. 故障转子弯曲及其弯—扭耦合振动特性的研究[D]. 江西理工大学, 2012.
[5] 张勇. 汽轮发电机组轴系扭转振动及弯-扭振动耦合的研究[D]. 清华大学, 1997.
Yong Zhang, Research on the torsional and coupling flexural-torsional vibration of the turbogenerator set [D], Qinghua University, 1997.
[6] Ittpana Perera. Theoretical and Experiment Study of Coupled Torsional-Lateral Vibrations in Rotor Dynamics[D]. The University of CALGARY, 1998.
[7] Fujiwara H, Tsuji T, Matsushita O. Vibration of Bending-Torsion Coupled Resonance in a Rotor[J]. American Society of Mechanical Engineers, 2013:V008T13A049.
[8] 王小立.船舶推进轴系动态性能分析与研究[D]. 武汉理工大学, 2008.
Xiao Li. Dynamic Performance Analysis and Research on Marine Propulsion Shafting[D]. Wuhan University of Technology, 2008.
[9] Hsieh S C, Chen J H, Lee A C. A modified transfer matrix method for the coupling lateral and torsional vibrations of asymmetric rotor-bearing systems [J]. Journal of Sound & Vibration, 2008, 312:563-571.
[10] 何成兵, 顾煜炯, 邢诚. 短路故障时汽轮发电机组轴系弯扭耦合振动分析[J]. 中国电机工程学报, 2010, 30(32):84-90.
HE Chengbing, GU Yujiong, XING Cheng. Coupled Flexural and Torsional Vibrations Analysis of Turbine Generator Shaft Systems Caused by Short Circuit Fault [J]. Proceedings of The Chinese Society for Electrical, 2010, 30(32):84-90.
[11] 费钟秀. 复杂转子耦合系统有限元建模及其动力特性研究[D]. 浙江大学, 2013.
Zhongxiu Fei. Research on Finite Element Modeling and Dynamic Behaviors of Complex Multi-rotor Coupled Systems [D]. Zhejiang University, 2013.
[12] 王建军, 韩勤锴, 李其汉. 参数振动系统频响特性研究[J]. 振动与冲击, 2010, 29(3):103-108.
    Wang Jian-jun, Han Qin-kai, Li Qi-han. Frequency response characteristics of parametric vibration system [J].Journal of Vibration and Shock, 2010, 29(3):103-108.
[13] Schweitzer G, Maslen E H. Magnetic bearings: theory, design, and application to rotating machinery [M]// Magnetic bearings: theory, design, and application to rotating machinery. Springer, 2009.
[14] 侯之超, 郑兆昌. 线性多自由度系统弱参数激励振动的稳定性分析[J]. 清华大学学报自然科学版, 1999, 39(11):46-49.
HOU Zhichao, ZHENG Zhaochang, Cheng Jiangang. Stability analysis of multiple degrees of freedom system subjected to weak parametric excitations [J]. Tsinghua University (Sci & Tech), 1999, 39(11), 46-49.
[15] 郭红, 夏伯乾, 孙一休. 径向动静压浮环轴承-转子系统稳定性分析[J]. 振动与冲击, 2017, 36(5):7-11.
GUO Hong, XIA Boqian, SUN Yixiu. Stability analysis of a journal floating ring hybrid bearing-rotor system [J]. Journal of Vibration and Shock, 2017, 36(5):7-11.
[16] Yuan Z, Chu F, Lin Y. External and internal coupling effects of rotor's bending and torsional vibrations under unbalances[J]. Journal of Sound and Vibration, 2007, 299(1-2):339-347.
[17] 刘延柱, 陈立群. 非线性振动[M]. 高等教育出版社, 2001.
LIU yanzhu, CHEN liqun. Nonlinear Vibration [M]. Higher Education Press, 2001.
[18] 裴永臣. 高速微小孔振动钻削主轴系统动力学分析[D]. 吉林大学, 2008.
Yongchen Pei. Dynamics of spindle system of high-speed machining micro-holes with ultrasonic oscillation [D]. Jilin University, 2008.
[19] Rao J S. History of Rotating Machinery Dynamics [M]. Springer Netherlands, 2011.
[20] Al-Bedoor B O. Modeling the coupled torsional and lateral vibrations of unbalanced rotors [J]. Computer Methods in Applied Mechanics & Engineering, 2001, 190(190):5999–6008.
[21] Lalanne, M. and G. Ferraris, Rotordynamics Prediction in Engineering [M]. John Wiley & Sons Ltd, 2nd Revised edition,1997.
[22] 王鸿雁,肖文生,刘忠砚,等.钻井过程中钻柱的横—扭耦合振动分析[J]. 噪声与振动控制. 2014, 34(1): 61-66.
WANG Hong-yan,XIAO Wen-sheng,et al.Analysis of Lateral-and-torsional Coupled Vibration of Drill String During Drilling Process[J].NOISE AND VIBRATION CONTROL.2014, 34(1): 61-66(in Chinese).
[23] 朱因远, 周纪卿. 非线性振动和运动稳定性[M]. 西安交通大学出版社, 1992.
ZHU Yin-yuan, Zhou Ji-qing. Nonlinear vibration and Motion stability [M]. XI'an Jiaotong University Press, 1992.
[24] 张杰, 唐友刚, 黄磊,等. 参数激励下深海立管多模态耦合振动特性分析[J]. 振动与冲击, 2013, 32(19):51-56.
ZHANG Jie TANG You-gang HUANG Lei LI Wei. Multi-mode coupling vibration analysis of deep-water risers under parametric excitations [J].Journal of Vibration and Sock, 2013, 32(19): 51-56.
[25] Peletan L, Baguet S, Torkhani M, et al. A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics [J]. Nonlinear Dynamics, 2013, 72(3):671-682.
[26] 张瑞成,卓丛林. 基于转子感应电流影响的轧机主传动机电耦合系统参激振动机理研究[J]. 振动与冲击, 2016, 35(17):1-6.
ZHANG Ruicheng,ZHUO Conglin. Parametrically excited vibration of electromechanical coupling system of a rolling mill main drive based on rotor induction current influence[J].Journal of Vibration and Sock,  2016, 35(17):1-6.

PDF(1930 KB)

Accesses

Citation

Detail

段落导航
相关文章

/