基于脊线信息增强与特征融合的瞬时转频估计

江星星1,吴楠1,石娟娟1,沈长青1,李川2,朱忠奎1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (20) : 166-172.

PDF(2138 KB)
PDF(2138 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (20) : 166-172.
论文

基于脊线信息增强与特征融合的瞬时转频估计

  • 江星星1,吴楠1,石娟娟1,沈长青1,李川2,朱忠奎1
作者信息 +

Rotational speed estimation based on the ridge enhancement and feature fusion

  • JIANG Xingxing1,WU Nan1,SHI Juanjuan1,SHEN Changqing1,LI Chuan2,ZHU Zhongkui1
Author information +
文章历史 +

摘要

转速获取是变工况设备健康诊断的前提。在不便安装速度传感器的情况下,基于振动信号时频分析获取转频是最常用的途径。然而,由于时频分析方法的自身特性和采集的振动信号中往往包含大量的背景噪声,导致得到的时频分布能量聚集性差、部分时段转速信息微弱等问题,很难提取到完整、准确的转频信息。为解决这一问题,提出一种脊线信息增强与特征融合的转速估计方法。首先,采用幅值累加平方策略对时频分布特征进行增强;然后,从信号低频区域和共振频带分别预估计出转频信息;最后,建立基于概率分布和局部波动特性的信息融合准则,以确定脊线融合位置以及融合结果,实现转频的准确估计。轴承故障实验信号验证说明:相比于传统的转频提取方法,本文提出的方法能够显著地改善能量微弱的转速信息的识别结果。

Abstract

One of the key steps for rotating equipment fault diagnosis under variable speed condition is to acquire the accurate shaft instantaneous frequency (IF).The most effective way to realize it is based upon the Time-frequency distribution (TFR) analysis.However, its effectiveness is often undermined by the TFR’s poor energy concentration and weak shaft IF-related signal segmentations caused by strong background noise and interferences.A speed estimation method based on the ridge enhancement and feature fusion was, therefore, proposed in this paper.The TF ridge candidates were enhanced firstly by the amplitude sum-square method, and then the TF ridge candidates in lower band and the resonance band were searched, respectively.The fusion criterion based on probability distribution and local fluctuation was, finally, established to acquire the accurate estimation of shaft IF ridge.Compared with conventional methods, the proposed method yields more accurate IF approximation results and is less sensitive to noise.The experiment results validate the effectiveness of the proposed method for shaft IF estimation.

关键词

时频分布 / 转频估计 / 特征融合 / 微弱信息

Key words

Time-frequency distribution / Rotational speed estimation / Feature fusion / Weak information

引用本文

导出引用
江星星1,吴楠1,石娟娟1,沈长青1,李川2,朱忠奎1. 基于脊线信息增强与特征融合的瞬时转频估计[J]. 振动与冲击, 2018, 37(20): 166-172
JIANG Xingxing1,WU Nan1,SHI Juanjuan1,SHEN Changqing1,LI Chuan2,ZHU Zhongkui1. Rotational speed estimation based on the ridge enhancement and feature fusion[J]. Journal of Vibration and Shock, 2018, 37(20): 166-172

参考文献

[1] 林京, 赵明. 变转速下机械设备动态信号分析方法的回顾与展望[J]. 中国科学: 技术科学, 2015, 45(7): 669-686.
LIN Jing, ZhAO Ming. Dynamic signal analysis for speed-varying machinery: A review [J]. Scientia Sinica Technologica, 2015, 45(7): 669-686.
[2] Fyfe K R, Munck E D S. Analysis of computed order tracking [J]. Mechanical Systems and Signal Processing, 1997, 11(2): 187-205.
[3] Bossley K M, Mckendrick R J, Harris C J, et al. Hybrid computed order tracking [J]. Mechanical Systems and Signal Processing, 1999, 13(4): 627-641.
[4] Lin J, Zhao M. A review and strategy for the diagnosis of speed-varying machinery[C] IEEE Prognostics and Health Management. 2014: 1-9.
[5] Wang T, Liang M, Li J, et al. Bearing fault diagnosis under unknown variable speed via gear noise cancellation and rotational order sideband identification [J]. Mechanical Systems & Signal Processing, 2015, 62: 30-53.
[6] 彭富强, 于德介, 罗洁思,等. 基于稀疏信号分解的自适应时变滤波器及其在齿轮故障诊断中的应用[J]. 机械工程学报, 2010, 46(24): 46-53.
PENG Fuqiang, YU Dejie LUO Jiesi, et al. MSCSSD-based adaptive time-varying filter and its application to gearbox fault diagnosis [J]. Journal of Mechanical Engineering, 2010, 46(24): 46-53.
[7] Wang H, Chen P. Fuzzy Diagnosis Method for Rotating Machinery in Variable Rotating Speed [J]. IEEE Sensors Journal, 2011, 11(1): 23-34.
[8] Shi J, Liang M, Necsulescu D S, et al. Generalized stepwise demodulation transform and synchrosqueezing for time–frequency analysis and bearing fault diagnosis [J]. Journal of Sound and Vibration, 2016, 368: 202-222.
[9] Urbanek J, Barszcz T, Antoni J. A two-step procedure for estimation of instantaneous rotational speed with large fluctuations [J]. Mechanical Systems and Signal Processing, 2013, 38(1): 96-102.
[10] 曹书峰, 朱忠奎, 黄伟国,等. 基于时频融合的转速估计及轴承故障特征提取研究[J]. 振动与冲击, 2013, 32(18): 174-178.
CAO Shufeng, ZHU Zhongkui, HUANG Weiguo, et al. Speed estimation based on time-frequency fusion and its application in feature extraction of bearing fault [J]. Journal of vibration and shock, 2013, 32(18): 174-178.
[11] Wang S, Chen X, Cai G, et al. Matching Demodulation Transform and SynchroSqueezing in Time-Frequency Analysis [J]. IEEE Transactions on Signal Processing, 2014, 62(1): 69-84.
[12] Wang T, Liang M, Li J, et al. Rolling element bearing fault diagnosis via fault characteristic order (FCO) analysis [J]. Mechanical Systems and Signal Processing, 2014, 45(1): 139-153.
[13] 何国林, 丁康, 李永焯. 基于啮合频率和频谱校正的风电齿轮箱振动信号阶比跟踪分析 [J]. 振动工程学报, 2016, 29(2): 324-330.
HE Guolin, DING Kang, LI Yongzhuo. Order tracking analysis for wind turbine planetary gearbox vibration based on meshing frequency and spectrum correction [J]. Journal of Vibration Engineering, 2016, 29(2): 324-330.
[14] Li C, Sanchez V, Zurita G, et al. Rolling element bearing defect detection using the generalized synchrosqueezing transform guided by time–frequency ridge enhancement [J]. ISA transactions, 2016, 60: 274-284.
[15] 郭瑜, 秦树人, 汤宝平等. 基于瞬时频率估计的旋转机械阶比跟踪[J]. 机械工程学报, 2003, 39(3): 32-36.
GUO Yu, QIN Shuren, TANG Baoping, et al. Order tracking of rotating machinery based on instantaneous frequency estimation [J]. Journal of Mechanical Engineering, 2003, 39(3): 32-36.

PDF(2138 KB)

Accesses

Citation

Detail

段落导航
相关文章

/