U型波纹管在抗性消声器中应用可行性的实验研究

薛飞 孙蓓蓓 陈建栋

振动与冲击 ›› 2018, Vol. 37 ›› Issue (20) : 230-236.

PDF(1861 KB)
PDF(1861 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (20) : 230-236.
论文

U型波纹管在抗性消声器中应用可行性的实验研究

  • 薛飞 孙蓓蓓 陈建栋
作者信息 +

A study on the feasibility of the application of the U-shaped corrugated Pipes in reactive mufflers

  • XUE Fei, SUN Beibei, Chen Jiandong
Author information +
文章历史 +

摘要

抗性消声器广泛应用于车辆进排气系统中以消除中低频噪声,而如何在有限安装空间条件下实现抗性消声器的宽频带消声性能是抗性消声器研究的难点。本文提出了一种使用U型波纹管代替内插管的抗性消声器设计方案,旨在利用U型波纹管的带阻滤波特性提升抗性消声器在截止频率以上频带的消声性能。为验证U型波纹管在抗性消声器中应用的可行性,设计了两种不同结构参数且在消声频带上形成互补的U型波纹管,对U型波纹管消声器在不同入口流速条件下的插入损失与压力损失进行了测试分析。提出了综合提升系数η这一指标用来综合衡量应用U型波纹管前后消声器在插入损失和压力损失上的差异。结果表明:U型波纹管在抗性消声器中的应用,有效地拓宽了消声器的消声带宽,显著提高了抗性消声器的消声性能。U型波纹管的使用增加了抗性消声器的压力损失,一定程度降低了消声器的气动性能。U型波纹管在抗性消声器中应用后,优化系数η达到了1.12~1.13,表明了U型波纹管对提升消声器消声性能的贡献大于其在气动性能上带来的损耗。本文验证了U型波纹管在抗性消声器中应用的可行性,为抗性消声器的设计提供了新的思路。

Abstract

A reactive muffler is widely used to reduce the low-frequency noise generated by internal combustion engines, but it is often difficult to obtain ideal noise attenuation performance above the upper cutoff frequency range.This paper presented a case study on a novel application of U-shaped corrugated pipes in reactive muffler, which aimed to improve the noise attenuation performance above the upper cutoff frequency range.Typical performance parameters such as the insertion loss and pressure loss were experimentally evaluated.Besides, an index (improvement coefficient η) was proposed to weigh the improvement performance of corrugated pipes in noise attenuation and pressure loss.Results demonstrate that the application of U-shaped corrugated pipes in the reactive muffler significantly improves the noise attenuation performance above the upper cutoff frequency range and successfully extents the bandwidth of noise attenuation.In addition, the application of U-shaped corrugated pipes increases the pressure loss of the reactive muffler, reducing the aerodynamic performance of the muffler to a certain extent.Moreover, the overall improvement coefficient η reaches 1.12~1.13, indicating that the corrugated pipes make more contribution in noise attenuation than in pressure loss.In conclusion, this study verified that the application of U-shaped corrugated pipes in the reactive mufflers is feasible and acceptable, and it provides a novel method in the design of reactive mufflers.

关键词

抗性消声器;U型波纹管 / 截止频率;综合提升系数;

Key words

reactive muffler / U-shaped corrugated pipes / cutoff frequency / overall improvement coefficient

引用本文

导出引用
薛飞 孙蓓蓓 陈建栋. U型波纹管在抗性消声器中应用可行性的实验研究[J]. 振动与冲击, 2018, 37(20): 230-236
XUE Fei, SUN Beibei, Chen Jiandong. A study on the feasibility of the application of the U-shaped corrugated Pipes in reactive mufflers[J]. Journal of Vibration and Shock, 2018, 37(20): 230-236

参考文献

[1] Barbieri R, Barbieri N, Lima KFD. Some applications of the PSO for optimization of acoustic filters[J]. Applied Acoustics, 2015, 89(1298):62-70.
[2] Bilawchuk S, Fyfe KR. Comparison and implementation of the various numerical methods used for calculating transmission loss in silencer systems[J]. Applied Acoustics, 2003, 64(9):903-916.
[3] Shi X, Mak CM. Sound attenuation of a periodic array of micro-perforated tube mufflers[J]. Applied Acoustics, 2017, 115:15-22.
[4] Khamchane A, Khelfaoui Y, et al. Shape optimization of reactive mufflers using threshold acceptance and finite element method methods[J]. Journal of the Acoustical Society of America, 2013, 133(5):3554.
[5] Chiu MC, Chang YC, et al. Shape Optimization of Mufflers Composed of Multiple Rectangular Fin-Shaped Chambers Using Differential Evolution Method[J]. Archives of Acoustics, 2015, 40(3):311-319.
[6] Lee JL. Optimal topology of reactive muffler achieving target transmission loss values: Design and experiment[J]. Applied Acoustics, 2015, 88:104–113.
[7] Siano D, Costa M, Bozza F. Prediction and enhancement of the acoustic performance of a spark ignition engine intake air filter box[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2013, 227(4):591-604.
[8] Xiang L, Zuo S, et al. Study of multi-chamber micro-perforated muffler with adjustable transmission loss[J]. Applied Acoustics, 2017, 122:35-40.
[9] Santha KS, Solanki N. Automotive Exhaust Muffler Design, Development and Study on Attenuating Whistling Noise [J]. SAE Technical Paper 2013; No. 2013-26-0099.
[10] Yu X, Cheng L, You X. Hybrid silencers with micro-perforated panels and internal partitions [J]. The Journal of the Acoustical Society of America, 2015, 137(2): 951-962.
[11] Ouédraogo B, Maréchal R, Ville JM, et al. Broadband noise reduction by circular multi-cavity mufflers operating in multimodal propagation conditions [J]. Applied Acoustics, 2016, 107:19-26.
[12] Burstyn, W. Eine Neue Pfeife (A New Pipe) [J]. Z. Tech. Phys. (Leipzig), 1922, 3: 179–180.
[13] Nakiboğlu G, Belfroid SPC, Golliard J, et al. On the whistling of corrugated pipes: effect of pipe length and flow profile [J]. Journal of Fluid Mechanics, 2011, 672: 78-108.
[14] Goyder, H. Noise generation and propagation within corrugated pipes [J]. Journal of Pressure Vessel Technology, 2013, 135(3): 030901.
[15] Popescu M, Wei S, Johansen ST. A model for flow-induced acoustics in corrugated pipes [J]. Communications in Computational Physics, 2013, 10(1):120-139.
[16] Amielh M, Anselmet F, et al. Aeroacoustic source analysis in a corrugated flow pipe using low-frequency mitigation [J]. Journal of Turbulence, 2014, 15(10): 650-676.
[17] Jones PW, Kessissoglou NJ. A numerical and experimental study of the transmission loss of mufflers used in respiratory medical devices. Acoustics Australia 2010; 38(1): 13-19.
[18] 左曙光, 龙国, 吴旭东, 等. 考虑微穿孔管消声器结构参数的共振频率预估模型[J]. 振动与冲击, 2015, 34(10) :173-178.
ZUO Shu-gang, LONG Guo, WU Xu-dong, et al. Resonant frequency predicting model for a micro-perforated tube muffler considering its structural parameters [J]. Zhendong Yu Chongji/journal of Vibration & Shock, 2015, 34(10):173-178.
[19] 吴大转,陈一伟,苗天丞,许伟伟,杜韬. 管路排气消声器性能的数值模拟与实验验证[J]. 振动与冲击, 2014, 33(9) :148-152.
WU Da-zhuang,CHEN Yi-wei, MIAO Tian-cheng, et al. Numerical simulation and test validation for performance of a muffler in an exhaust pipe[J]. Zhendong Yu Chongji/journal of Vibration & Shock, 2014, 33(9):148-152.
[20] 毕嵘, 刘正士, 王敏, 等. 排气消声器声学及阻力特性数值仿真研究[J]. 噪声与振动控制, 2008, 28(1) :111-114.
BI Rong, LIU ZS, WANG M, et al. The Numerical Simulation on Acoustic and Resistance Performance of Exhaust Muffler[J]. Noise & Vibration Control, 2008, 28(1):111-114.
[21] 程震, 胡习之, 王县威. 结构因素对扩张式消声器压力损失影响[J]. 机械设计与研究, 2013, 29(4):122-125.
CHENG Zhen, HU Xi-zhi, WANF Xian-wei. The numerical analysis of single expansion muffler using CFD method [J]. Machine Design & Research, 2013, 29(4):122-125.

PDF(1861 KB)

691

Accesses

0

Citation

Detail

段落导航
相关文章

/