提出一种由多层负刚度余弦形曲梁连接构成的新型高性能舰船设备冲击防护装置,其抗冲击机理是基于两端刚性固定余弦形曲梁横向压载下的非线性力学特性。给出了余弦形曲梁横向压载下力-位移关系解析表达式。建立了针对余弦形曲梁几何参数的优化模型,对最优解进行有限元分析并与解析解进行了比较。建立多层双余弦梁负刚度结构与船体板架的有限元模型,利用显式瞬态分析方法对该系统在三折线冲击谱冲击载荷下的响应进行了分析,探讨层数及安装方式对装置抗冲性能的影响。结果表明:所提出的冲击隔离装置性能优良;随着负刚度梁层数的增多,抗冲击性能增强;层数相同时,将一定长度的该结构分离为两部分安装,抗冲击性能更佳。本文研究成果可指导负刚度抗冲击结构的设计,具有实际意义。
Abstract
A novel high-performance ship equipment impact-resistance device was proposed based on the NS (negative stiffness) properties of the cosine-shaped curved beams with fixed ends when they were pushed at the center.The formulas of the dimensional relationship between the force and displacement were given.According to the theoretical formulas, the optimization model of beam geometric parameters was established, and the finite element analysis was carried out, then solutions were compared between the FEA and the formulas.The finite element mesh of the multilayer NS structure and the deck grillage was modelled and the response of the system under dual-sinusoid impact load was analyzed within an explicit transient analysis step.The influence of the layer number and the installation method on shock isolation was studied.The results show that the acceleration, velocity and displacement are obviously reduced after the transmission of the shock isolation system.With the layer number increasing, the impact resistance is enhanced.With same layer numbers, the model which is separated in the length into two parts is of better shock isolation performance.The results of this study can guide the design of the NS shock isolation structure, which is of practical significance.
关键词
负刚度 /
多层结构 /
抗冲击 /
优化 /
瞬态分析
{{custom_keyword}} /
Key words
negative stiffness /
multilayer structure /
shock isolation /
optimization /
transient analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 吴广明, 梅永娟, 朱新进, 等. 某柴油机基座结构抗冲击计算[J]. 中国舰船研究, 2006,1(4):41-43, 61.
WU Guangming, MEI Yongjuan, ZHU Xinjin, et al. Analysis of Shock Resistance of Diesel Engine M ounting[J]. Chinese Journal of Ship Research, 2006,1(4):41-43, 61.
[2] 姚熊亮, 刘东岳, 赵新, 等. 大型复杂舰船设备抗冲击动态特性研究[J]. 哈尔滨工程大学学报, 2008(10):1023-1029.
YAO Xiong-liang, LIU Dong-yue, ZHAO Xin, et al. Research on the anti-shock dynamical characteristics of large scale warship equipments[J]. Journal of Harbin Engineering University, 2008(10):1023-1029.
[3] 江国和, 沈荣瀛, 华宏星, 等. 舰船机械设备冲击隔离技术研究进展[J]. 船舶力学, 2006(01):135-144.
JIANG Guo-he, SHEN Rong-ying, HUA Hong-xing, et al. Advances in study on shock isolation of naval equipment[J]. Journal of Ship Mechanics, 2006(01):135-144.
[4] 路纯红, 白鸿柏. 新型超低频非线性被动隔振系统的设计[J]. 振动与冲击, 2011,30(1):234-236.
LU Chunhong, BAI Hongbai. A new type nonlinear ultra-low frequency passive vibration isolation system[J]. Journal of Vibration and Shock, 2011,30(1):234-236.
[5] 赵剑. 基于双稳态特性的加速度开关研究[D]. 西安: 西安电子科技大学, 2008.
ZHAO Jian. A Study on Threshold Acceleration Switch Based on Bistable Characteristics[D]. Xi'an: Xidian University, 2008.
[6] Correa D M, Klatt T, Cortes S, et al. Negative stiffness honeycombs for recoverable shock isolation[J]. Rapid Prototyping Journal, 2015,21(2):193-200.
[7] Qiu J, Lang J H, Slocum A H. A Curved-Beam Bistable Mechanism[J]. Journal of Microelectromechanical Systems, 2004,13(2):137-146.
[8] Qiu J, Lang J H, Slocum A H. A centrally-clamped parallel-beam bistable MEMS mechanism: 14th IEEE International Conference on Micro Electro Mechanical Systems, Interlaken, Switzerland, 2001[C]. technical digest, January 21-25, 2001.
[9] Correa D M, Seepersad C C, Haberman M R. Mechanical design of negative stiffness honeycomb materials[J]. Integrating Materials and Manufacturing Innovation, 2015,4(1):1-11.
[10] 张相闻, 杨德庆. 船用新型抗冲击隔振蜂窝基座[J]. 振动与冲击, 2015(10):40-45.
ZHANG Xiangwen, YANG Deqing. A novel marine impact resistance and vibration isolation cellular base[J]. Journal of Vibration and Shock, 2015(10):40-45.
[11] 中国舰船研究院科技发展部. German BWB Specification BV043, 冲击安全性(前联邦德国国防舰艇建造规范)[S]. 北京: 1998.
[12] 尹群. 水面舰船设备冲击环境与结构抗冲击性能研究[D]. 南京: 南京航空航天大学, 2006.
YIN Qun. Studies on Shock Environment for Equipments on Surface Ship and Anti-Shock Characteristics of Structures[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006.
[13] 彭彪, 王基. 正负双波激励冲击响应谱数值分析[J]. 海军工程大学学报, 2010(02):38-42.
PENG Biao, WANG Ji. Numerical analysis of dual-wave shock on SRS[J]. Journal of Naval University of Engineering, 2010(02):38-42.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}