基于振动信号的柴油发动机缸压恢复

张帅1,2,曾锐利3

振动与冲击 ›› 2018, Vol. 37 ›› Issue (21) : 150-157.

PDF(1355 KB)
PDF(1355 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (21) : 150-157.
论文

基于振动信号的柴油发动机缸压恢复

  • 张帅1,2,曾锐利3
作者信息 +

Diesel engine cylinder pressure recovery based on vibration signals

  • ZHANG Shuai1,2,ZENG Ruili3
Author information +
文章历史 +

摘要

气缸压力作为发动机的重要指标,直接反映了发动机燃烧状态的好坏。由于发动机的运行条件复杂,多数条件下为非平稳状态,如何提高发动机在多工况下的缸压识别精度成为了缸压恢复的难点。提出了一种利用振动信号恢复缸压的新方法,以振动信号的最大熵谱密度作为特征,并采用道格拉斯-普克算法对输入输出向量进行了降维处理,最后利用遗传算法优化的多隐含层BP神经网络有效恢复了多工况下的柴油发动机缸压曲线。经试验测得:经平均化后的缸压曲线峰值最大恢复误差为0.05MPa,位置误差最大为0.6ºCA,满足缸压恢复的精度要求。

Abstract

As an important index of a diesel engine, its cylinder pressure directly reflects its combustion state.Due to complex operating conditions of the engine, it is in a non-stationary state under most conditions.How to improve the cylinder pressure’s recognition accuracy under multiple working conditions becomes the key of cylinder pressure recovery.Here, a new method for cylinder pressure recovery using vibration signals was proposed.Taking the maximum entropy spectral density of a vibration signal as its feature, Douglas-Puke algorithm was adopted to reduce the dimension number of input and output feature vectors.Finally, the BP neural network with multi-hidden layer optimized using the genetic algorithm was used to effectively restore the cylinder pressure curve of the engine under multiple operating conditions.The test results showed that after the average treatment, the maximum restoring error of the cylinder pressure curve’s peak values is 0.05 MPa and their maximum location error is 0.6  °CA to meet the accuracy requirement of cylinder pressure recovery.

关键词

柴油发动机缸压 / 振动信号 / 最大熵谱 / 道格拉斯-普克算法 / BP神经网络 / 遗传算法

Key words

Diesel engine cylinder pressure / Vibration signal / Maximum entropy spectrum / Douglas - Puke algorithm / BP neural network / Genetic algorithm

引用本文

导出引用
张帅1,2,曾锐利3. 基于振动信号的柴油发动机缸压恢复[J]. 振动与冲击, 2018, 37(21): 150-157
ZHANG Shuai1,2,ZENG Ruili3. Diesel engine cylinder pressure recovery based on vibration signals[J]. Journal of Vibration and Shock, 2018, 37(21): 150-157

参考文献

[1] R. Johnsson. Indirect measurements for control and diagnostics of IC engines[D]. Ph.D. Thesis, Luleå University of Technology,Sweden, 2004.
[2] A. Cocchi, P. Andreini, L. Cassitto, et al. Accelerometer Based Methodology for Combustion Parameters Estimation[J]. Energy Procedia, 2015, 7(81):950-959.
[3] K. Bizon, G. Continillo, E. Mancaruso, et al. Reconstruction of In-Cylinder Pressure in a Diesel Engine from Vibration Signal Using a RBF Neural Network Model[J]. SAE Technical Paper 2011-24-0161, 2011.
[4] R. Johnsson, A. Ågren. Prediction of points and tendencies of the pressure waveform from crankshaft speed measurements[J]. Kerntechnik, 2009, 74(1):51-54.
[5] F. Taglialatela, M. Lavorgna, E. Mancaruso, et al. Determination of combustion parameters using engine crankshaft speed[J]. Mechanical Systems & Signal Processing, 2013, 38(38):628–633.
[6] C. Bennett, J.F. Dunne, S. Trimby, D. Richardson. Engine cylinder pressure reconstruction using crank kinematics and recurrently-trained neural networks[J]. Mechanical Systems and Signal Processing, 2017,85:126-145.
[7] Y. Ren. Detection of knocking combustion in diesel engines by inverse filtering of structural vibration signals[D]. Ph.D. Thesis, University of New South Wales, Australia, 1999.
[8] 姚建军,向阳,周勇,等.基于倒频谱方法的柴油机气缸压力识别[J].船海工程,2006,35(1):37-39.
J. J. Yao, Y. Xiang, Y. Zhou, et al. Identification of cylinder pressure of diesel engine based on the cepstral analysis[J]. Ship & ocean engineering, 2006, 35(1):37-39.
[9] Y. Gao, R.B. Randall. Reconstruction of diesel engine cylinder pressure using a time domain smoothing technique[J]. Mechanical Systems and Signal Processing, 1999, 13(5): 709–722.
[10] V. G. Zurita. Vibration based diagnostics for analysis of combustion properties and noise emissions of IC engines[D]. Ph.D. Thesis, Luleå University of Technology, Sweden, 2001.
[11] H. Du, L. Zhang, X. Shi. Reconstructing cylinder pressure from vibration signals based on radial basis function networks[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2001, 215(6):761-767.
[12] B. Colin. Reconstruction of gasoline engine in-cylinder pressures using recurrent neural networks[D]. University of Sussex, 2014.
[13] 高洪滨, 欧阳光耀, 张萍. 基于BP神经网络的柴油机气缸压力重构[J]. 内燃机工程, 2005, 26(1):68-70.
H.B. Gao, G.Y. OuYang, P. Zhang. Reconstruction of Diesel Engine Cylinder Pressure Based on BP Neural Network[J]. Chinese Internal Combustion Engine Engineering, 2005, 26(1):68-70.
[14] R. Johnsson. Cylinder pressure reconstruction based on complex radial basis function networks from vibration and speed signals[J]. Mechanical Systems & Signal Processing, 2006, 20(8):1923-1940.
[15] K. Bizon, G. Continillo, E. Mancaruso, et al. Towards On-Line Prediction of the In-Cylinder Pressure in Diesel Engines from Engine Vibration Using Artificial Neural Networks[J]. SAE Technical Paper 2013-24-0137, 2013.
[16] K. Bizon, G. Continillo, S. Lombardi, et al. ANN-based Virtual Sensor for On-line Prediction of In-cylinder Pressure in a Diesel Engine[C]. Proceedings of the 24th European Symposium on Computer Aided Process Engineering, Hungary, 2014, 33:763-768.
[17] S. Trimby, J. F. Dunne, C. Bennett, et al. Unified approach to engine cylinder pressure reconstruction using time-delay neural networks with crank kinematics or block vibration measurements[J]. International Journal of Engine Research, 2016, 18(3):1-39.
[18] 常春, 贾继德, 曾锐利,等. 基于时-频相干与 RBF 网络的气缸压力识别研究[J]. 车用发动机, 2016, 39(5):87-92.
C. Chang, J. D. Jia, R. L. Zeng, et al. Recognition of Cylinder Pressure Based on Time-frequency Coherence and RBF Network[J]. Vehicle engine, 2016, 39(5):87-92.
[19] J. P. Burg. The Relationship Between Maximum Entropy Spectra and Maximum Likelihood Spectra[J]. Geophysics, 1972, 37(2):375-376.

PDF(1355 KB)

Accesses

Citation

Detail

段落导航
相关文章

/