基于动态插值自适应方法的时变轴系纵向振动主动控制

郑洪波1,覃会1,胡芳2,张志谊1,3

振动与冲击 ›› 2018, Vol. 37 ›› Issue (21) : 171-183.

PDF(1276 KB)
PDF(1276 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (21) : 171-183.
论文

基于动态插值自适应方法的时变轴系纵向振动主动控制

  • 郑洪波1,覃会1,胡芳2,张志谊1,3
作者信息 +

Longitudinal vibration active control for a time-varying shafting-system based on a dynamic interpolation adaptive algorithm

  • ZHENG Hongbo1, QIN Hui1, HU Fang2, ZHANG Zhiyi1,3
Author information +
文章历史 +

摘要

推力轴承纵向刚度随转速变化的特性使推进轴系成为动态特性时变的系统。针对时变轴系纵向振动控制问题,提出动态插值自适应控制方法。首先建立推进轴系耦合振动模型,由频域方程得到控制通道和干扰通道的频响函数, 其次建立动态插值自适应控制方法,通过插值算法动态拟合时变补偿器模型,消除时变动态特性对纵向振动控制算法稳定性的影响。为验证控制方法的有效性,分别对有、无插值的自适应控制方法进行数值仿真,仿真结果表明,动态插值自适应控制方法能有效控制推力轴承纵向振动,避免了无插值自适应控制系统的发散;在不同转速稳态运行下,有插值的控制方法能够极大地抑制推力轴承纵向振动,控制后振动加速度幅值小于无控制条件下的1/20。

Abstract

The longitudinal stiffness of thrust bearings varies with shaft speed to lead to a propulsion shafting system has time-varying dynamic characteristics.Here, the dynamic interpolation adaptive method was proposed to control longitudinal vibrations of a time-varying shafting system.Firstly, a coupled vibration model for a propulsion shafting system was established, and frequency response functions of the control channel and the disturbance channel were obtained from frequency domain equations.Then, the dynamic interpolation adaptive method was used to dynamically fit the time-varying compensator model with interpolation algorithm and eliminate influences of time-varying characteristics on the stability of the vibration control algorithm.To verify the validity of this control method, numerical simulations were conducted for the adaptive control methods with and without dynamic interpolation, respectively.Simulation results showed that the dynamic interpolation adaptive method can effectively control longitudinal vibrations of thrust bearings to avoid divergence of the adaptive control system without interpolation; under the steady operation at different shaft speeds, the proposed control method can extremely suppress longitudinal vibration of thrust bearings, and the vibration acceleration amplitude after control is smaller than 1/20 of that with no control.

关键词

轴系纵振 / 主动控制 / 动态插值自适应算法

Key words

 longitudinal vibration of the shafting system / active control / dynamic interpolating adaptive algorithm

引用本文

导出引用
郑洪波1,覃会1,胡芳2,张志谊1,3. 基于动态插值自适应方法的时变轴系纵向振动主动控制[J]. 振动与冲击, 2018, 37(21): 171-183
ZHENG Hongbo1, QIN Hui1, HU Fang2, ZHANG Zhiyi1,3. Longitudinal vibration active control for a time-varying shafting-system based on a dynamic interpolation adaptive algorithm[J]. Journal of Vibration and Shock, 2018, 37(21): 171-183

参考文献

[1] 赵 耀, 张赣波, 李良伟. 船舶推进轴系纵向振动及其控制技术研究进展[J]. 中国造船,2011,52(04): 259-269.
ZHAO Yao, ZHANG Gan-bo, LI Liang-wei. Ship propulsion shafting longitudinal vibration and control technology development [J].Shipbuilding of China, 2011, 52(04):259-269.
[2] 曹贻鹏, 张文平. 使用动力吸振器降低轴系纵振引起的水下结构辐射噪声研究[J]. 哈尔滨工程大学学报,28(7)(2007), pp. 747–751.
Cao Yi-peng, Zhang Wen-ping. Using Dynamic absorbers to reduce underwater structural noise due to longitudinal vibration of shafting[J]. Journal of Harbin Engineering University, 2007, 28(7):747–751.
[3] Dylejko P G, Kessissoglou N J, Tso Y, et al. Optimization of a resonance changer to minimize the vibration transmission in marine vessels [J]. Journal of sound and vibration, 2007, 300(1): 101-116.
[4] 李清云. 磁流变弹性体舰船推进轴系纵振吸振器的设计与实验[D].上海交通大学,2015.2.
LI Qin-yun. Design and experiment of the longitudinal vibration absorber for ship propulsion shafting based on magneto-rheological elastomer [D].Shanghai Jiao Tong University,2015.2.
[5] Lewis D W, Allaire P E and Thomas P W. Active Magnetic Control of Oscillatory Axial Shaft Vibrations in Ship Shaft Transmission Systems, Part 1: System Natural Frequencies and Laboratory Scale Model [J], Tribology transactions, 1989 32(2):170–178.
[6] Baz A, Gilheany J and Steimel P. Active Vibration Control of Propeller Shafts [J], Journal of Sound and Vibration, 1990, 136(3):361–372.
[7] Merz S, Kinns R and Kessissoglou N J. Structural and Acoustic Responses of a Submarine Hull Due to Propeller Forces [J], Journal of Sound and Vibration, 2009, 325(1-2):266–286.
[8] Lewis D W, Humphris R R and Thomas P W. Active Magnetic Control of Oscillatory Axial Shaft Vibrations in Ship Shaft Transmission Systems, Part 2: Control Analysis and Response of Experimental System, Tribology transactions [J]. 1989, 32(2):179–188.
[9] 李栋梁. 轴系-艇体耦合系统振动声辐射分析与实验研究[D].上海:上海交通大学,2012.
LI Dong-liang. Analysis and Experiment on Vibration and Acoustic Radiation of the Shafting-hull Coupled System [D].Shanghai: Shanghai Jiao Tong University, 2012.
[10] 胡芳. 推进轴系纵向振动主动控制方法研究[D].上海:上海交通大学,2014.
HU Fang. Research on active control of the longitudinal vibration of propulsion shafting systems [D].Shanghai: Shanghai Jiao Tong University, 2014.
[11] Zhang Z, Rustighi E, Chen Y, et al: Active Control of the Longitudinal-Lateral Vibration of a Shaft-Plate Coupled System[J], Journal of Vibration and Acoustics, 2012, 134(6): 061002.
[12] Pierre A, Pascal G, Greg P. Self-scheduled control of linear parameter-varying systems: a design example [J], Automatica, 1995,31(9):1251-1261.
[13] Hu Q, Ma H, Fei Q et al. Smooth switching control for discrete-time multi-variable systems with unknown time-varying parameters [J]. IET Control Theory & Applications, 2015, 9(6):994-962.
[14] Fahy F J, Gardonio P. Sound and structural vibration: radiation, transmission and response [M]. Salt Lake City: Academic press, 2007.
[15] Snyder S D, Hansen C H. The effect of transfer function estimation errors on the filtered-x LMS algorithm [J]. IEEE Transactions on Signal Processing, 1994, 42(4): 950-953.
[16] Zhang Z, Hu F, Wang J. On saturation suppression in adaptive vibration control [J]. Journal of Sound and Vibration, 2010, 329(9): 1209-1214.

PDF(1276 KB)

Accesses

Citation

Detail

段落导航
相关文章

/