Noor III光热电站吸热塔气动阻尼研究

黄景辉1,李寿英1,刘敏1,陈政清1,回忆1,李红星2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (21) : 177-184.

PDF(1505 KB)
PDF(1505 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (21) : 177-184.
论文

Noor III光热电站吸热塔气动阻尼研究

  • 黄景辉1,李寿英1,刘敏1,陈政清1,回忆1,李红星2
作者信息 +

Aerodynamic damping of heat absorption tower of Noor III solar thermal power station

  • HUANG Jinghui1  LI Shouying1  LIU Min1  CHEN Zhengqing1  HUI Yi1  LI Hongxing2
Author information +
文章历史 +

摘要

以位于非洲摩洛哥的Noor III光热电站吸热塔为工程背景。加拿大西安大略大学风洞实验室的试验表明该吸热塔在设计风速下的位移值超过规范值的40%,该结构的涡振临界风速小于设计风速,且涡振区横风向响应起控制作用。据此,在已有光热电站吸热塔气弹模型的基础上进行了风洞试验;在不同结构阻尼比下采集了15min的模型顶部加速度时程;运用随机减量法和广义卡尔曼滤波法得到气动阻尼比。结果表明:两种方法识别的气动阻尼比吻合较好;在不同加速度幅值处识别的总阻尼比具有随加速度幅值的增大先增大后减小的规律;根据ASCE/SEI7-10,在重现周期为50年,C类地貌条件下,风速6.5m/s时识别的气动阻尼比为负的最小。这些规律为涡振区横风向响应起控制作用的现象提供了合理的解释。

Abstract

Heat absorption tower of Noor III solar thermal power station in Morocco, Africa was taken as engineering background.The wind tunnel test results at University of Western Ontario in Canada showed that the tower displacement value under the designed wind velocity is 40% higher than the code value, but the structure’s vortex-induced vibration (VIV) critical wind speed is lower than the designed wind speed, and the response in crosswind direction within VIV area has a control action.Accordingly, an aero-elastic model for the tower was tested in wind tunnel.A 15 min-long acceleration time-history was collected at the top of the model under different structural damping ratios.Aerodynamic damping ratios were obtained using the random decrement technique and the extended Kalman filtering method, respectively.The results showed that aerodynamic damping ratios recognized with the two methods agree better each other; the total damping ratios recognized at different acceleration amplitudes firstly increase and then decrease with increase in acceleration amplitude; according to ASCE/SEI7-10, the identified aerodynamic damping ratio is negative and the minimum at wind speed of 6.5 m/s under the recurrence period of 50-year and C geomorphologic condition; these laws provide a reasonable explanation for the phenomenon of the response in crosswind direction within VIV area having a control action.

关键词

高耸结构 / 涡振 / 气动阻尼比 / 随机减量法 / 广义卡尔曼滤波法

Key words

 towering structure / vortex induced vibration / aerodynamic damping ratio / random decrement technique / extended Kalman filter

引用本文

导出引用
黄景辉1,李寿英1,刘敏1,陈政清1,回忆1,李红星2. Noor III光热电站吸热塔气动阻尼研究[J]. 振动与冲击, 2018, 37(21): 177-184
HUANG Jinghui1 LI Shouying1 LIU Min1 CHEN Zhengqing1 HUI Yi1 LI Hongxing2. Aerodynamic damping of heat absorption tower of Noor III solar thermal power station[J]. Journal of Vibration and Shock, 2018, 37(21): 177-184

参考文献

[1] 陈政清. 桥梁风工程 [M]. 北京: 人民交通出版社, 2005. 129-138.
[2] 武岳. 风工程与结构抗风设计 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2014. 70-76.
[3] 顾明, 施宗城. “东方明珠”广播电视塔风致振动研究 [J]. 振动与冲击, 1995, 1995(2): 31-34.
GU Ming, SHI Zongcheng. Testing investigation for wind-induced vibration of the new TV tower in Shanghai [J], Journal of Vibration and Shock, 1995, 1995(2): 31-34.
[4] 石启印, 李爱群, 李培彬, 等. 北京机场新塔台结构风洞试验研究 [J]. 土木工程学报, 2004, 37(8): 28-32.
SHI Qiyin, LI Aiqun, LI Peibin, et al. Wind tunnel tests study on the new tall tower structure model of Beijing airport [J]. China Civil Engineering Journal, 2004, 37(8): 28-32.
[5] Brincker R, Ventura C E, Andersen P. Damping estimation by frequency domain decomposition [J]. Proceedings of Spie the International Society for Optical Engineering, 2001, 4359: 698-703.
[6] James G H I, Carne T G, Lauffer J P. The natural excitation technique (NExT) for modal parameter extraction from operating wind turbines [J]. Nasa Sti/recon Technical Report N, 1993, 93(4): 260-277.
[7] Overschee P V, Moor B D. Subspace Identification for Linear Systems [J]. 1996 :57-93.
[8] Peeters B, Herman V D A, Guillaume P, et al. The PolyMAX Frequency-Domain Method: A New Standard for Modal Parameter Estimation [J]. Shock & Vibration, 2004, 11(3-4): 395-409.
[9] Zhang Y, Song H W. Non-overlapped random decrement technique for parameter identification in operational modal analysis [J]. Journal of Sound & Vibration, 2016, 366: 528-543.
[10] Ibrahim S R. Random Decrement Technique for Modal Identification of Structures [J]. Journal of Spacecraft & Rockets, 2012, 14(11): 696.
[11] H. Cole J. On-the-line analysis of random vibrations [J]. Proceedings of the National Academy of Sciences, 1997, 94(6): 2557-62.
[12] 全涌, 顾明. 方形断面高层建筑的气动阻尼研究 [J]. 工程力学, 2004, 21(1): 26-30.
QUAN Yong, GU Ming. Wind tunnel test study of aerodynamic damping of super highrise buildings [J]. Engineering Mechanics, 2004, 21(1): 26-30.
[13] Kalman R E. A New Approach to Linear Filtering and Prediction Problems [J]. Journal of Basic Engineering, 1960, 82D: 35-45.
[14] Jazwinski A H. Stochastic processes and filtering theory [J]. Mechanics In Science And Engineering, 2007, 64(2): 1730-1730.
[15] Pan S, Xiao D, Xing S, et al. A general extended Kalman filter for simultaneous estimation of system and unknown inputs [J]. Engineering Structures, 2016, 109: 85-98.
[16] 张西宁, 屈梁生. 一种改进的随机减量信号提取方法 [J]. 西安交通大学学报, 2000, 34(1): 106-107.
ZHANG Xining, LIANG Qusheng. Improved method for extracting of random decrement signal [J]. Journal of Xi'an Jiaotong University, 2000, 34(1): 106-107.

PDF(1505 KB)

Accesses

Citation

Detail

段落导航
相关文章

/