一种具有几何非线性的斜置惯容式隔振器动态特性研究

王勇1,汪若尘1,孟浩东2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (21) : 184-189.

PDF(1000 KB)
PDF(1000 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (21) : 184-189.
论文

一种具有几何非线性的斜置惯容式隔振器动态特性研究

  • 王勇1,汪若尘1,孟浩东2
作者信息 +

Dynamic characteristics of an inclined inerter-based vibration isolator with geometric nonlinearity

  • WANG Yong1, WANG Ruochen1, MENG Haodong2
Author information +
文章历史 +

摘要

提出一种具有几何非线性的斜置惯容式隔振器,表现在惯容器在承载质量运动方向上的力是非线性的以及动力学方程中的加速度项是非线性的,采用谐波平衡法求得系统的动力学响应,并与数值解进行对比。用动态位移峰值,传递率峰值和隔振频带来评价斜置惯容式隔振器的隔振性能,并与线性隔振器进行对比分析。研究表明当激励力幅值较小时,与线性隔振器相比,斜置惯容式隔振器的力传递率峰值较小,隔振频带较宽,而动态位移峰值较大。

Abstract

Here, an inclined inerter-based vibration isolator with geometric nonlinearity was proposed.It was shown that the force of the inerter in moving direction of its bearing mass is nonlinear and the acceleration term in the system’s dynamic equation is also nonlinear.The system’s dynamic response was obtained using the harmonic balance method and then compared with the numerical solution.The vibration isolation performance of the inclined inerter-based vibration isolator was evaluated with peak dynamic displacement, peak transmissibility and vibration isolation frequency band.It was compared with the vibration isolation performance of an equivalent linear vibration isolator.The results showed that when the excitation force amplitude is smaller, compared with the linear vibration isolator, the inclined inerter-based vibration isolator has a smaller force peak transmissibility, a wider vibration isolation frequency band, and a larger  peak dynamic displacement.

关键词

惯容器 / 隔振器 / 几何非线性 / 动态特性

Key words

inerter / vibration isolator / geometrical nonlinearity / dynamic characteristic

引用本文

导出引用
王勇1,汪若尘1,孟浩东2. 一种具有几何非线性的斜置惯容式隔振器动态特性研究[J]. 振动与冲击, 2018, 37(21): 184-189
WANG Yong1, WANG Ruochen1, MENG Haodong2. Dynamic characteristics of an inclined inerter-based vibration isolator with geometric nonlinearity[J]. Journal of Vibration and Shock, 2018, 37(21): 184-189

参考文献

[1] Alabuzhev P, Gritchin A, Kim L, et al. Vibration Protecting and Measuring Systems with Quasi-Zero Stiffness[M]. Hemisphere, New York, 1989.
[2] Carrella A, Brennan M J, Waters T P. Static analysis of a passive vibration isolation with quasi zero-stiffness characteristic[J]. Journal of Sound and Vibration, 2007, 301(3):678 689.
[3] 王勇, 李舜酩, 程春等. 立方速度反馈控制的准零刚度隔振器动力学特性分析[J]. 振动工程学报, 2016, 29(2): 305-313.
WANG Yong, LI Shun-ming, Cheng Chun et al. Dynamic analysis of a quasi-zero-stiffness vibration isolator with cubic velocity feedback control[J]. Journal of Vibration Engineering, 2016, 29(2): 305-313.
[4] 王勇, 李舜酩, 程春. 基于准零刚度隔振器的车-座椅-人耦合模型动态特性研究[J]. 振动与冲击, 2016, 35(15): 190-196.
WANG Yong, LI Shun-ming, Cheng Chun. Dynamic characteristics of a vehicle-seat-human coupled model with quasi-zero-stiffness isolators[J]. Journal of Vibration and Shock, 2016, 35(15): 190-196.
[5] Tang B, Brennan M J. A comparison of two nonlinear damping mechanisms in a vibration isolator[J]. Journal of Sound and Vibration, 2013, 332(3): 510-520.
[6] 孙靖雅, 华宏星, 肖锋等. 非线性迟滞阻尼对隔振系统力传递特性影响[J]. 振动与冲击, 2014, 33(10): 131-136.
SUN Jing-ya, HUA Hong-xing, XIAO Feng et al. Influence of nonlinear hysteretic damping on force transmissibility of a vibration isolation system[J]. Journal of Vibration and Shock, 2014, 33(10): 131-136.
[7] Smith M C. Synthesis of mechanical networks: The inerter[J]. IEEE Transactions on Automatic Control, 2002, 47(10): 1648-1662.
[8] 陈龙, 张孝良, 聂佳梅等. 基于半车模型的两级串联型 ISD 悬架性能分析[J]. 机械工程学报, 2012, 48(6): 102-108.
CHEN Long, ZHANG Xiao-liang, NIE Jia-mei et al. Performance analysis of two-stage series-connected inerter-spring-damper suspension based on half-car model[J]. Journal of Mechanical Engineering, 2012, 48(6): 102-108.
[9] 陈龙, 杨晓峰, 汪若尘等. 基于二元件ISD结构隔振机理的车辆被动悬架设计与性能研究[J]. 振动与冲击, 2013, 32(6): 90-95.
CHEN Long, YANG Xiao-feng, WANG Ruo-chen et al. Design and performance study of vehicle passive suspension based on two-element inerter-spring-damper structure vibration isolation mechanism[J]. Journal of Vibration and Shock, 2013, 32(6): 90-95.
[10] 葛正, 王维锐. 车辆主动惯容式动力吸振悬架系统研究[J]. 振动与冲击, 2017, 36(1): 167-174.
GE Zheng,WANG Wei-rui. Vehicle active ISD-DVA suspension system[J]. Journal of Vibration and Shock, 2017, 36(1): 167-174.
[11] 孙晓强, 陈龙, 汪少华等. 基于惯容器的铁道车辆悬挂性能提升研究[J]. 铁道学报, 2017, 39(2): 32-38.
SUN Xiao-qiang, CHEN Long, WANG Shao-hua et al. Research on performance benefits in railway vehicle suspension employing inerter[J]. Journal of the China Railway Society, 2017, 39(2): 32-38.
[12] Lazar I F, Neild S A, Wagg D J. Using an inerter-based device for structural vibration suppression[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(8): 1129-1147.
[13] Hu Y, Chen M Z Q. Performance evaluation for inerter-based dynamic vibration absorbers[J]. International Journal of Mechanical Sciences, 2015, 99: 297-307.
[14] Chen M Z Q, Hu Y, Huang L et al. Influence of inerter on natural frequencies of vibration systems[J]. Journal of Sound and Vibration, 2014, 333(7): 1874-1887.
[15] Hu Y, Chen M Z Q, Shu Z et al. Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution[J]. Journal of Sound and Vibration, 2015, 346: 17-36.
[16] Wang Y, Li S, Neild S A et al. Comparison of the dynamic performance of nonlinear one and two degree-of-freedom vibration isolators with quasi-zero stiffness[J]. Nonlinear Dynamics, 2017, 88(1): 635-654.

PDF(1000 KB)

Accesses

Citation

Detail

段落导航
相关文章

/