基于时域响应灵敏度分析的非线性系统参数识别

刘广,刘济科,吕中荣

振动与冲击 ›› 2018, Vol. 37 ›› Issue (21) : 213-219.

PDF(1034 KB)
PDF(1034 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (21) : 213-219.
论文

基于时域响应灵敏度分析的非线性系统参数识别

  • 刘广,刘济科,吕中荣
作者信息 +

Parametric recognition of a nonlinear system based on time domain response sensitivity analysis

  • LIU Guang,LIU Jike,L Zhongrong
Author information +
文章历史 +

摘要

基于响应灵敏度分析的有限元模型修正法已广泛应用于线性结构系统的局部损伤和裂纹参数等的识别。本文尝试将该方法推广应用到非线性系统的参数识别中。从非线性系统运动方程出发,通过数值积分得到系统的强迫振动响应,然后对系统的物理参数求导得到时域响应对参数的灵敏度,从而构造相应的响应灵敏度矩阵用于参数识别反问题。本文以Holmes-Duffing非线性系统和物理工程中有着广泛应用的双重sine Gordon非线性系统的参数识别为例,说明方法的应用过程。算例研究了不同的初始参数和测量噪声对识别结果的影响,结果表明响应灵敏度法能准确快速识别非线性系统的参数,并且具有对测量噪声不敏感的优点。

Abstract

The finite element model modification method based on time domain response sensitivity analysis is widely used in local damage and crack parametric recognitions of linear structural systems.Here, this method was extended in parametric recognition of a nonlinear system.Starting from the motion equation of this nonlinear system, its forced vibration response was obtained with the numerical integration method, and then the time domain response sensitivity with respect to each parameter was derived through differentiating the response with respect to each physical parameter to construct the corresponding response sensitivity matrix for parametric identification inverse problem.Parametric identifications for Holmes-Duffing nonlinear system and the dual-sine Gordon system widely used in physical engineering were taken as examples to illustrate the application process of the proposed method.The results showed that the response sensitivity analysis method can be used to accurately and quickly identify parameters of nonlinear systems, and it has the advantage of being insensitive to measurement noise.

关键词

参数识别 / 非线性系统 / 应灵敏度分析 / Holmes-Duffing系统 / 双重sine Gordon系统

Key words

Parameter identification / nonlinear system / response sensitivity analysis / Holmes-Duffing system / double sine Gordon system

引用本文

导出引用
刘广,刘济科,吕中荣. 基于时域响应灵敏度分析的非线性系统参数识别[J]. 振动与冲击, 2018, 37(21): 213-219
LIU Guang,LIU Jike,L Zhongrong. Parametric recognition of a nonlinear system based on time domain response sensitivity analysis[J]. Journal of Vibration and Shock, 2018, 37(21): 213-219

参考文献

[1] 汪雪川. 非线性系统求解方法的研究及航天工程应用[D]. 西北工业大学, 2015.
[2] Y.M. Chen, J.K. Liu, Period doubling of the nonlinear dynamical system of an electrostatically actuated micro-cantilever[J]. Smart Structures and Systems, 2014, 14(5): 743-763.
[3] S.K. Agrawal, K. Vishal, Existence of Chaos, dynamical behaviour with fractional order derivatives and modified adaptive function projective synchronization with uncertain parameters of a chaotic system[J]. Optik-International Journal for Light and Electron Optics, 2017, 131: 89-103.
[4] Z. Zhang, S. Xu, B. Zhang, Asymptotic tracking control of uncertain nonlinear systems with unknown actuator nonlinearity[J]. IEEE Transactions on Automatic Control, 2014, 59(5): 1336-1341.
[5] Y. Ji, X. Liu, F. Ding, New criteria for the robust impulsive synchronization of uncertain chaotic delayed nonlinear systems[J]. Nonlinear Dynamics, 2015, 79(1): 1-9.
[6] P.L. Green, Bayesian system identification of a nonlinear dynamical system using a novel variant of simulated annealing[J]. Mechanical Systems and Signal Processing, 2015, 52: 133-146.
[7] 谢献忠, 易伟建, 刘锡军等. 非线性时域识别方程的不适定性与正则化方法研究[J]. 振动与冲击, 2006, 25(5): 120-123.
[8] J.D. Bastidas, G. Petrone, C.A. Ramos, et al. A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel[J]. Mathematics and Computers in Simulation, 2017, 131: 38-54.
[9] 贾洁, 万一品, 刘洪海. 基于多目标遗传算法的振动熨平板压实系统参数优化[J]. 振动与冲击, 2017, 36(12): 230-235.
[10] X. Li, M. Yin. Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm[J]. Nonlinear Dynamics, 2014, 77(1-2): 61-71.
[11] 朱俊, 刘天羽, 王致杰, 等. 基于蜂群算法的选择性神经网络集成的风机齿轮箱轴承故障诊断[J]. 电机与控制应用, 2017, 44(1): 6-11.
[12] N. Mallik, A.S. Wali, N. Kuri. Damage location identification through neural network learning from optical fiber signal for structural health monitoring[C]. Proceedings of the 5th International Conference on Mechatronics and Control Engineering. ACM, 2016: 157-161.
[13] Z.D. Zheng, Z.R. Lu, W.H. Chen, et al. Structural damage identification based on power spectral density sensitivity analysis of dynamic responses[J]. Computers & Structures, 2015, 146: 176-184.
[14] Z.R. Lu, Li Wang, An enhanced response sensitivity approach for structural damage identification: convergence and performance[J]. International Journal for Numerical Methods in Engineering, 2017.
[15] H. Zhu, L. Mao, S. Weng, Calculation of dynamic response sensitivity to substructural damage identification under moving load[J]. Advances in Structural Engineering, 2013, 16(9): 1621-1631.
[16] 刘广, 刘济科, 陈衍茂, 基于Wilson-θ和Newmark-β法的非线性动力学方程改进算法[J]. 计算力学学报, 2016, 33(4): 433-439.
[17] Z.R. Lu, S.S. Law, Features of dynamic response sensitivity and its application in damage detection[J]. Journal of sound and vibration, 2007, 303(1): 305-329.
[18] C.W. Lim, S.K. Lai, B.S Wu, et al. Accurate approximation to the double sine-Gordon equation[J]. International journal of engineering science, 2007, 45(2): 258-271.

PDF(1034 KB)

Accesses

Citation

Detail

段落导航
相关文章

/