凸舌油槽对摆线转子泵脉动特性的影响

牟介刚1 刘涛1 谷云庆1,2 郑水华1 吴登昊1 周佩剑1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (21) : 260-266.

PDF(1493 KB)
PDF(1493 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (21) : 260-266.
论文

凸舌油槽对摆线转子泵脉动特性的影响

  • 牟介刚1 刘涛1 谷云庆1,2 郑水华1 吴登昊1 周佩剑1
作者信息 +

Effects of tongue oil groove on fluctuation characteristics of a cycloid rotor pump

  • MOU Jiegang1, LIU Tao1, GU Yunqing1,2, ZHENG Shuihua1, WU Denghao1,ZHOU Peijian1
Author information +
文章历史 +

摘要

为了改善摆线转子泵流场脉动特性,建立一种具有增加极限进出油面积的凸舌油槽结构模型。采用数值模拟方法,对凸舌油槽结构的摆线转子泵模型内部流场进行计算,分析了凸舌油槽结构对转子流体内部齿顶处、齿根处及最大啮合容积处压力脉动的影响,研究了转子轴向压力不均匀度以及轴向流场特性。结果表明:凸舌油槽结构能够有效改善摆线转子泵流场压力脉动;在齿根处压力脉动下降约25%,最大啮合容积处压力脉动下降约54.2%,对齿顶影响不大;齿根处轴向不均匀度约3.5%,齿顶处约17.9%,最大啮合容积处约3.1%;齿间容积越小,轴向流动阻力越大,使得高压流体沉积,导致轴向存在不均匀度。

Abstract

In order to improve flow field fluctuation characteristics of a cycloid rotor pump, the pump model having a tongue oil groove structure with a capacity of increasing limit oil inlet and outlet areas was established.Using the numerical simulation method, the internal flow field in the pump model with tongue oil groove structure was calculated.The effects of tongue oil groove on pressure fluctuations at the rotor’s tooth top, tooth root and the maximum meshing volume were analyzed and the rotor’s axial pressure unevenness and axial flow field characteristics were studied.The results showed that the tongue oil groove structure can effectively improve the flow field’s pressure fluctuation of the cycloid rotor pump; the pressure fluctuation at the rotor tooth root drops by about 25%, the pressure fluctuation at the maximum meshing volume drops by about 54.2%; the structure has little effect on the pressure fluctuation at the rotor tooth top; the axial unevenness at the tooth root is about 3.5%, that at the tooth top is about 17.9%, that at the maximum meshing volume is about 3.1%; the smaller the volume between teeth, the larger the axial flow resistance to cause the deposition of high pressure fluid and axial unevenness.

关键词

摆线转子泵 / 凸舌油槽 / 压力脉动 / 轴向不均匀度 / 流场

Key words

cycloid rotor pump / tongue oil groove / pressure fluctuation / axial unevenness / flow field

引用本文

导出引用
牟介刚1 刘涛1 谷云庆1,2 郑水华1 吴登昊1 周佩剑1. 凸舌油槽对摆线转子泵脉动特性的影响[J]. 振动与冲击, 2018, 37(21): 260-266
MOU Jiegang1, LIU Tao1, GU Yunqing1,2, ZHENG Shuihua1, WU Denghao1,ZHOU Peijian1. Effects of tongue oil groove on fluctuation characteristics of a cycloid rotor pump[J]. Journal of Vibration and Shock, 2018, 37(21): 260-266

参考文献

[1] Emma F, Adolfo S, Dario B, et al. A tridimensional CFD analysis of the oil pump of an high performance motorbike engine[J]. Energy Procedia, 2014, 45: 938-948.
[2] 丛小青, 刘梦仙, 乌骏. 直线-共轭内啮合齿轮泵的设计方法[J]. 排灌机械工程学报, 2008, 26(1): 33-36.
CONG Xiaoqing , LIU Mengxian , WU Jun. Design method of straight-conjugate internal gear pump[J]. Drainage and Irrigation Machinery, 2008, 26(1): 33-36.
[3] Castilla R, Gamez-Montero P J, Campo D D, et al. Three-Dimensional numerical simulation of an external gear pump with decompression slot and meshing contact point[J]. Journal of Fluids Engineering, 2015, 137(4): 041105.
[4] Fiebig W, Korzyb M. Vibration and dynamic loads in external gear pumps[J]. Archives of Civil & Mechanical Engineering, 2015, 15(3): 680-688.
[5] 郑光泽, 袁林. 考虑发动机系统动力学与动力润滑耦合的活塞拍击分析[J]. 振动与冲击, 2015, 34(20):92-97.
ZHENG Guangze,YUAN Lin. Research on piston slap considering coupled vibration of hydrodynamic lubrication and dynamics of internal combustion engine[J]. Journal of Vibration and Shock, 2015, 34(20):92-97.
[6] 龚金科, 蔡皓, 刘云卿. 转子式机油泵内流场CFD分析及实验研究[J]. 湖南大学学报(自然科学版), 2007, 34(5): 24-28.
GONG Jinke, CAI Hao, LIU Yunqing. CFD analysis and experimental research on the internal flow field in rotor oil pump[J]. Journal of Hunan University(Natural Sciences), 2007, 34(5): 24-28.
[7] Del CD, Castilla R, Raush GA, et al. Numerical analysis of external gear pumps including cavitation[J]. Journal of Fluids Engineering, 2012, 134(8): 98-105.
[8] Faraz A, Omer C, Asghar L, et al. Characterization of lubricating oil effects on the performance of reciprocating compressors in air–water heat pumps[J]. International Journal of Refrigeration, 2017, 74: 503-514.
[9] 张铁柱, 张洪信, 赵红. 非接触式转子泵转子理论型线与实际型线设计[J]. 机械工程学报, 2002, 38(11):152-155.
ZHANG Tiezhu, Zhang Hongxin, ZHAO Hong. Design of theoretical and ac-tual rotor curve of un-contact pump[J]. Journal of Mechanical Engineering, 2002, 38(11): 152-155.
[10] 毛华永, 李国祥, 刘海涛,等. 摆线转子泵转子结构参数的确定[J]. 农业机械学报, 2006, 37(2): 45-47.
Mao Huayong, Li Guoxiang, Liu Haitao, Hu Yunping, Wang Wei. Determination of rotor structural parameters of cycloidal rotor pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(2): 45-47.
[11] 杨国来, 杜旭明, 郑海,等. 圆弧转子泵转子型线设计[J]. 西华大学学报自然科学版, 2012, 31(2): 66-68.
YANG Guo lai, DU Xuming, ZHENG Hai, et al. Design of rotor curve for circular rotor pumps[J]. Journal of Xihua University(Natural Science Edition), 2012, 31(2): 66-68.
[12] 薛程亮, 赵建军. 基于CFD的摆线泵进出油腔对容积效率影响的分析[J]. 计算机辅助工程, 2013, 22(1): 1-4.
XUE Chengliang, ZHAO Jianjun. Analysis of influence on volume efficiency of inlet and outlet cavities of cycloidal pump based on CFD[J]. Computer Aided Engineering, 2013, 22(1): 1-4.
[13] Hablanian M H. Design and performance of oil-free pumps[J]. Vacuum, 1990, 41(7): 1814-1818.
[14] James D, Ganapathy C, Kodeswaran T, et al. Quality improvement of lubricating oil pump shaft through statistical process control used in automobile industry[J]. Procedia Engineering, 2012, 38: 2053-2062.
[15] Dario B, Fulvio D S, Adolfo S, et al. Modelling approach on a gerotor pump working in cavitation conditions[J]. Energy Procedia, 2016, 101: 701-709.

PDF(1493 KB)

Accesses

Citation

Detail

段落导航
相关文章

/