桥梁结构系统地震易损性分析方法研究

吴文朋1, 2, 3,李立峰2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (21) : 273-280.

PDF(1066 KB)
PDF(1066 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (21) : 273-280.
论文

桥梁结构系统地震易损性分析方法研究

  • 吴文朋1, 2, 3,李立峰2
作者信息 +

System seismic fragility analysis methods for bridge structures

  • WU Wenpeng1,2,3, LI Lifeng2
Author information +
文章历史 +

摘要

桥梁工程是由多个相互联系和作用的构件组成的结构系统,地震作用下任何构件发生损伤都可能影响桥梁使用功能的完整性,采用单个构件的易损性来表示桥梁整体的易损性往往会高估桥梁的抗震能力。以一座多跨钢筋混凝土连续梁桥为例,基于OpenSEES软件建立有限元模型并进行大量的非线性时程分析,同时考虑桥墩、铅芯橡胶支座、板式橡胶支座和桥台四类构件的地震破坏,分别采用界限估计法、Monte-Carlo模拟法和条件边缘乘积法(PCM)建立了桥梁系统地震易损性曲线。通过这些系统易损性曲线的对比分析,讨论了各种分析方法的适用性和合理性。研究结果表明,基于传统界限估计和PCM法的系统易损性分析依赖于构件易损性分析的结果,而Monte-Carlo方法可以直接建立桥梁的系统易损性曲线,并独立考虑各种不确定性的影响;PCM法能快速建立精确的桥梁系统易损性曲线,适用于需要考虑多种失效模式的桥梁系统易损性分析。

Abstract

A bridge is a structural system consisting of various interrelated and interacting components, and any component’s damage under earthquake affects the bridge’s functional integrity.Adopting a single component fragility to express the bridge’s system fragility may over-estimate the bridge’s aseismic capacity.A multi-span RC continuous girder bridge was taken as an example, and its finite element model was constructed with the software OpenSEES to conduct a great number of nonlinear time-history analyses.Simultaneously considering seismic damages of bridge pier, lead core rubber bearing, plate-type rubber bearing and bridge abutment, the bound estimation method, Monte-Carlo simulation one and the product of conditional marginal (PCM) one were applied to establish the bridge’s system seismic fragility curves.These fragility curves were contrastively analyzed to judge the applicability and reasonability of the three methods.The results showed that the traditional bound estimation method and the PCM one depend on component fragility analysis results, while Monte-Carlo simulation method is able to directly construct the bridge’s system fragility curve and to independently consider effects of various uncertainties; the PCM method can be used to quickly construct the bridge’s accurate system fragility curve, and it is more applicable for the bridge system fragility analysis considering multiple failure modes.

关键词

桥梁工程 / 地震 / 系统易损性分析 / 系统可靠度 / 不确定性

Key words

bridge / earthquake / system fragility analysis / system reliability / uncertainty

引用本文

导出引用
吴文朋1, 2, 3,李立峰2. 桥梁结构系统地震易损性分析方法研究[J]. 振动与冲击, 2018, 37(21): 273-280
WU Wenpeng1,2,3, LI Lifeng2. System seismic fragility analysis methods for bridge structures[J]. Journal of Vibration and Shock, 2018, 37(21): 273-280

参考文献

[1] Karim K R and Yamazaki F. Effect of earthquake ground motions on fragility curves of highway bridge piers based on numerical simulation[J]. Earthquake engineering & structural dynamics, 2001, 30(12): 1839-1856.
[2] Nielson B and Desroches R. Seismic fragility methodology for highway bridges using a component level approach[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(6): 823-839.
[3] Shinozuka M, Feng M, Lee J, et al. Statistical analysis of fragility curves[J]. Journal of Engineering Mechanics, 2000, 126(12): 1224-1231.
[4] Mackie K R and Stojadinović B. Fragility basis for California highway overpass bridge seismic decision making[R]. 2005, Pacific Earthquake Engineering Research Center, College of Engineering, University of California: Berkeley.
[5] Choi E, Desroches R, and Nielson B. Seismic fragility of typical bridges in moderate seismic zones[J]. Engineering Structures, 2004, 26(2): 187-199.
[6] Pan Y, Agrawal A K, and Ghosn M. Seismic Fragility of Continuous Steel Highway Bridges in New York State[J]. Journal of Bridge Engineering, 2007, 12(6): 689-699.
[7] 李立峰, 吴文朋, 黄佳梅等. 地震作用下中等跨径 RC 连续梁桥系统易损性研究[J]. 土木工程学报, 2012, 45(10): 152-160.
LI Lifeng, WU Wenpeng, HUANG Jiamei, et al. Study on system vulnerability of medium span reinforced concrete continuous girder bridge under earthquake excitation [J]. Civil Engineering Journal, 2012, 10:152-160
[8] Zhang J and Huo Y. Evaluating effectiveness and optimum design of isolation devices for highway bridges using the fragility function method[J]. Engineering Structures, 2009, 31(8): 1648-1660.
[9] 刘骁骁, 吴子燕, 王其昂. 基于多维性能极限状态的概率地震需求分析[J]. 振动与冲击, 2017, 36(1): 181-187.
Liu Xiaoxiao, WU Ziyan, Wang Qiang.
Multi-Dimensional performance limit state for probabilistic seismic demand analysis[J]. Journal of Vibration and Shock, 2017, 36(1): 181-187.
[10] Wu W, Li L, and Shao X. Seismic assessment of medium-span concrete cable-stayed bridges using the component and system fragility functions[J]. Journal of Bridge Engineering, 2016. 10.1061/(ASCE)BE.1943- 5592. 0000888, 04016027
[11] 宋帅, 钱永久, 吴刚. 基于多元Copula函数的桥梁体系地震易损性分析方法研究[J]. 振动与冲击, 2017, 36(9): 122-129.
Song Shuai, Qian Yongjiu Wu Gang. Research on seismic fragility analysis of bridge system based on multivariate Copula function [J]. Journal of Vibration and Shock, 2017, 36(9): 122-129.
[12] 郑凯锋, 陈力波, 庄卫林等. 基于概率性地震需求模型的桥梁易损性分析[J]. 工程力学, 2013, 30(5): 165-171
Zheng Kaifeng, Cheng Libo, Zhuang Weilin, et al. Bridge vulnerability analysis based on probabilistic seismic[J]. Engineering Mechanics, 2013, 30(5): 165-171
[13] Ditlevsen O. Narrow reliability bounds for structural systems[J]. Journal of structural mechanics, 1979, 7(4): 453-472.
[14] Pandey M. An effective approximation to evaluate multinormal integrals[J]. Structural Safety, 1998, 20(1): 51-67.
[15] 徐略勤, 李建中. 基于修正滑移刚体模型的挡块抗震强度预测及其应用[J]. 振动与冲击, 2014, 33(17): 55-61.
Xu Lüeqin, Li Jianzhong. Seismic strength prediction and its application of reinforced concrete retainers based on modified rigid body sliding model[J]. Journal of Vibration and Shock, 2014, 33(17): 55-61
[16] Mazzoni S, Mckenna F, Scott MH, et al. The Open System for Earthquake Engineering Simulation User Command Language Manual[R]. 2006.
[17] Federal Emergency Management Agency. Multi-Hazard Loss Estimation Methodology Earthquake Model, Technical Manual. 2011, Applied Technology Council,: Washington.
[18] 钟剑, 庞于涛, 曹飒飒等. 基于构件的RC连续梁桥地震体系易损性分析[J]. 同济大学学报(自然科学版), 2015, 43(2): 193-198.
Zhong Jian, Pang Yutao, Cao Sasa, et al. Seismic Fragility Methodology for RC Continuous Bridges Based on Components Correlation[J]. Journal of Tongji University (Natural Science), 2015, 43(2): 193-198.

PDF(1066 KB)

Accesses

Citation

Detail

段落导航
相关文章

/