[1] 王宏超, 陈进, 董广明. 基于最小熵解卷积与稀疏分解的滚动轴承微弱故障特征提取[J]. 机械工程学报, 2013, 49(1):88-94.
Wang Hongchao, Chen Jin, Dong Guangming. Fault Diagnosis Method for Rolling Bearing's Weak Fault Based on Minimum Entropy Deconvolution and Sparse Decomposition[J]. Journal of Mechanical Engineering, 2013, 49(1):88-94.
[2] 冷永刚, 郑安总, 范胜波. SVD分量包络检测方法及其在滚动轴承早期故障诊断中的研究[J]. 振动工程学报, 2014(5):794-800.
Leng Yonggang, Zheng Anzong, Fan Shengbo. SVD component-envelope detection method and its application in the incipient fault diagnosis of rolling bearing[J]. Journal of Vibration Engineering, 2014(5):794-800.
[3] 何正嘉, 訾艳阳, 张西宁. 现代信号处理及工程应用[M]. 西安:西安交通大学出版社, 2007:2192245.
[4] Wu Zhaohua, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 1(1), 1-41.
[5] Rilling G, Flandrin P. on the Influence of Sampling on the Empirical Mode Decomposition[C]// IEEE International Conference on Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. IEEE, 2006:III-III.
[6] Dragomiretskiy K, Zosso D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
[7] 刘长良, 武英杰, 甄成刚. 基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J]. 中国电机工程学报, 2015, 35(13):3358-3365.
Liu Changliang. Wu Yingjie, Zhen Chenggang. Rolling Bearing Fault Diagnosis Based on Variational Mode Decomposition and Fuzzy C Means Clustering[J]. Proceedings of the CSEE, 2015, 35(13):3358-3365.
[8] 唐贵基, 王晓龙. 变分模态分解方法及其在滚动轴承早期故障诊断中的应用[J]. 振动工程学报, 2016, 29(4):638-648.
Tang Guiji, Wang Xiaolong. Variational mode decomposition method and its application on incipient fault diagnosis of rolling bearing[J]. Journal of Vibration Engineering, 2016, 29(4):638-648.
[9] Kim S H, Soedel W, Lee J M. Analysis of the Beating Response of Bell Type Structures[J]. Journal of Sound & Vibration, 1994, 173(4):517–536.
[10] Fégeant O. Structural mobilities for the edge-excited, semi-infinite cylindrical shell using a perturbation method [J]. Journal of Sound & Vibration, 2001, 248(3):499-519.
[11] 于德介, 陈淼峰, 程军圣,等. 基于EMD的奇异值熵在转子系统故障诊断中的应用[J]. 振动与冲击, 2006, 25(2):24-26.
Yu Dejie, Chen Miaofeng, Cheng Junsheng, et al. Fault diagnosis approach for rotor system based on EMD method and sigular value entropy[J]. Journal of Vibration and Shock, 2006, 25(2):24-26.
[12] 张超, 陈建军, 杨立东,等. 奇异值熵和支持向量机的齿轮故障诊断[J]. 振动、测试与诊断, 2011, 31(5):600-604.
Zhangchao, Chen Jianjun. Yang Lidong, et al. Gear fault diagnosis based on singular value entropy and support vector machines[J]. Journal of Vibration Measurement & Diagnosis, 2011, 31(5):600-604.
[13] 王奉涛, 陈守海, 闫达文,等. 基于流形-奇异值熵的滚动轴承故障特征提取[J]. 振动、测试与诊断, 2016, 36(2):288-294.
Wang Fengtao, Chen Shouhai, Yan Dawen, et al. Fault feature extraction of rolling bearings based on manifold singular value entropy[J]. Journal of Vibration Measurement & Diagnosis, 2016, 36(2):288-294.
[14] 李天云, 陈昌雷, 周博,等. 奇异值分解和最小二乘支持向量机在电能质量扰动识别中的应用[J]. 中国电机工程学报, 2008, 28(34):124-128.
Li Tianyun, Chen Changlei, Zhou Bo, et al. Application of SVD and LS-SVD in power quality disturbances classification[J]. Proceedings of the CSEE, 2008, 28(34):124-128.
[15] Konsstantinides K, Yao K. Statistical analysis of effective singular values in matrix rank determination[J]. Acoustics Speech & Signal Processing IEEE Transactions on, 1988, 36(5):757-763.
[16] Hou Z. Adaptive singular value decomposition in wavelet domain for image deoising[J]. Pattern Recognition, 2003, 36(8):1747-1763.