为了研究新型纤维增强镁合金混杂层合板在低速冲击下的力学响应,本文分别对由玻璃纤维、碳纤维和二者混杂增强的AZ31B镁合金层合板在不同冲击能量下的落锤低速冲击试验进行了数值模拟。基于镁合金各向异性塑性本构和指数关系界面脱粘内聚力本构模型,同时纤维复合材料层采用三维Hashin失效准则且引入刚度折减,编写了复合材料层板损伤的VUMAT子程序,并将该子程序嵌入ABAQUS/Explicit中实现对层合板冲击过程的模拟。研究了该纤维层合板在不同冲击能量下的动态冲击响应以及脱粘与损伤演化规律,分析了冲击载荷、形变和能量吸收随时间的变化规律。模拟结果表明:在冲击能较小时,首先在冲击背面出现基体开裂,随着冲击能的增加,层合板受冲击面出现由无明显损伤到出现基体开裂和纤维断裂的现象;与单一碳纤维增强的镁合金层合板复合材料相比,单一玻璃纤维增强的镁合金层合板在冲击载荷作用时能够吸收更多的能量,碳纤维层内混杂合适的玻璃纤维铺层能够提高碳纤维增强镁合金层合板的抗冲击性能。
Abstract
In order to investigate the low-velocity impact response of novel fiber reinforced magnesium alloy laminates, the numerical simulations of low velocity drop weight impact tests on AZ31B magnesium alloy laminates reinforced with glass fiber, carbon fiber and their hybrids under different impact energies were conducted.The magnesium alloy, the interfacial delamination between two neighboring layers and the fiber/epoxy composites in the fiber/AZ31B Mg laminates were modeled by using an anisotropic plastic constitutive model, an exponential cohesive zone model, and 3D Hashin failure criteria incorporated with the stiffness reduction of failed elements respectively.In addition, the numerical analyses on the low-velocity impact of different fiber/Mg laminates were carried out by using ABAQUS/Explicit with a user-defined subroutine VUMAT to predict the dynamic impact response, delamination as well as damage evolution under different impact energies.Meantime, the variations of impact force, deformation and energy absorption with time were also analyzed.The results show that the matrix cracking first occurs at the backside, while the matrix cracking and fiber breakage could also appear at the impact side with the increasing of impact energy.Compared with a single carbon fiber reinforced epoxy composite/magnesium alloy laminate, a single glass fiber reinforced epoxy composite/magnesium alloy/laminate can absorb more energy under impact load.Hybrid carbon fiber and glass fiber composite laminates can provide the best impact-resistant properties when the glass layers are at the down layer.
关键词
纤维镁混杂层合板 /
低速冲击 /
脱粘 /
损伤演化 /
VUMAT
{{custom_keyword}} /
Key words
Fiber magnesium hybrid laminates /
low velocity impact /
delamination /
damage evolution /
VUMAT
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈勇,庞宝君,郑伟,等. 玻璃纤维增强铝合金层板低速冲击力学特性及低温影响研究[J]. 振动与冲击, 2014, 33(17): 203-208.
CHEN Yong,PANG Bao-jun,ZHENG Wei,et al. Low velocity impact performance of glass fiber-reinforced aluminum laminates and effect of exposure temperature [J]. Journal of vibration and Shock, 2014, 33(17): 203-208.
[2] 马玉娥, 胡海威, 熊晓枫. 低速冲击下纤维金属层合板的损伤模式研究[J]. 应用力学学报, 2014 (4): 562-566.
MA Yu’e, HU Haiwei, XIONG Xiaofeng. Study on damage mode and damage evolution of fibre metal laminates subjected to low-velocity impact [J]. Chinese Journal of Applied Mechanics, 2014 (4): 562-566.
[3] Ostrovsky I, Henn Y. Present state and future of magnesium application in aerospace industry[C]// International Conference “New challenges in aeronautics” ASTEC. 2007, 7: 19-22.
[4] Cortés P, Cantwell W J. The fracture properties of a fibre–metal laminate based on magnesium alloy[J]. Journal of Materials Science, 2004, 37(3):163-170.
[5] Pärnänen T, Alderliesten R, Rans C, et al. Applicability of AZ31B-H24 magnesium in Fibre Metal Laminates – An experimental impact research [J]. Composites Part A Applied Science & Manufacturing, 2012, 43(9):1578-1586.
[6] Múgica J I, Aretxabaleta L, Ulacia I, et al. Impact characterization of thermoformable fibre metal laminates of 2024-T3 aluminium and AZ31B-H24 magnesium based on self-reinforced polypropylene [J]. Composites Part A, Applied Science & Manufacturing, 2014, 61(7):67-75.
[7] 朱公志, 郑长良, 邓洋波,等. 碳纤维增强镁合金层合板拉伸性能和层间断裂韧性[J]. 科学技术与工程, 2011, 11(7): 1527-1531.
ZHU Gongzhi, ZHENG Changliang, DENG Yangbo, et al. Investigation into the Tension and Fracture Toughness Properties of Carbon Fibre-metal Laminates Based on Magnesium Alloy [J]. Science Technology and Engineering, 2011, 11(7): 1527-1531.
[8] Sadighi M, Pärnänen T, Alderliesten R C, et al. Experimental and Numerical Investigation of Metal Type and Thickness Effects on the Impact Resistance of Fiber Metal Laminates [J]. Applied Composite Materials, 2012, 19(3): 545-559.
[9] Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48.
[10] Hill R. The mathematical theory of plasticity[M]. Oxford university press, 1950.
[11] Agnew S R, Özgür Duygulu. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B [J]. International Journal of Plasticity, 2005, 21(6): 1161-1193.
[12] Feng F, Huang S, Meng Z, et al. A constitutive and fracture model for AZ31B magnesium alloy in the tensile state [J]. Materials Science & Engineering A, 2014, 594(4): 334-343.
[13] 刘万雷,常新龙,张晓军, 等. 基于改进Hashin 准则的复合材料低速冲击损伤研究[J]. 振动与冲击,2016, 35(12): 209-214.
LIU Wan-lei,CHANG Xin-long,ZHANG Xiao-jun, et al. Low-velocity impact analysis of composite plates based on modified Hashin criterion [J]. Journal of vibration and Shock, 2016, 35(12): 209-214.
[14] Hashin, Z. Failure Criteria for Unidirectional Fiber Composites [J]. Journal of Applied Mechanics, 1980, 47(2): 329-334.
[15] 古兴瑾, 许希武. 纤维增强复合材料层板高速冲击损伤数值模拟[J]. 复合材料学报, 2012, 29(1): 150-161.
GU Xingjin, XU Xiwu. Numerical simulation of damage in fiber reinforced composite laminates under high velocity impact [J]. Acta Materiae Compositae Sinica, 2012, 29(1):150-161.
[16] Xu X P, Needleman A. Void nucleation by inclusion debonding in a crystal matrix [J]. Modelling & Simulation in Materials Science & Engineering, 1998, 1(2): 111-132.
[17] Bosch M J V D, Schreurs P J G, Geers M G D. An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion [J]. Engineering Fracture Mechanics, 2006, 73(9): 1220-1234.
[18] Needleman A. An analysis of decohesion along an imperfect interface [J]. International Journal of Fracture, 1990, 42(1): 21-40.
[19] 陈勇, 庞宝君, 郑伟,等. 纤维金属层板低速冲击试验和数值仿真[J]. 复合材料学报, 2014, 31(3): 733-740.
CHEN Yong, PANG Baojun, ZHENG Wei, et al. Tests and numerical simulation on low velocity impact performance of fiber metal laminates [J]. Acta Materiae Compositae Sinica, 2014, 31(3): 733-740.
[20] Shi Y, Swait T, Soutis C. Modelling damage evolution in composite laminates subjected to low velocity impact [J]. Composite Structures, 2012, 94(9): 2902-2913.
[21] Airoldi A, Baldi A, Bettini P, et al. Efficient modelling of forces and local strain evolution during delamination of composite laminates [J]. Composites Part B Engineering, 2015, 72: 137-149.
[22] Pan Y, Wu G, Cheng X, et al. Mode I and Mode II interlaminar fracture toughness of CFRP/magnesium alloys hybrid laminates [J]. Composite Interfaces, 2016, 23(5): 1-13.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}