对钢筋混凝土框架结构在128条地震波的作用下用OpenSees软件进行了非线性时程分析,考虑了钢筋的屈服强度、钢筋的弹性模量、结构质量、阻尼比、混凝土的抗压强度、混凝土的弹性模量以及地震动强度7个随机变量的影响,另外对型钢混凝土框架结构进行了非线性时程分析,除上述随机变量外,还考虑了型钢的屈服强度和弹性模量的影响,分别得到了2种框架结构的顶点位移、基底剪力、最大楼层加速度和最大层间位移角4种地震需求,用局部敏感性分析法和全局敏感性分析法2种分析方法进行了敏感性分析,得到了各个随机变量对4种地震需求的影响的敏感性排序,对2种分析方法的结果进行了对比,得到用2种分析方法都影响显著的随机变量以及影响较小的随机变量。该结果对提高框架结构的地震需求分析的计算效率具有实际意义。
Abstract
The nonlinear time history analyses of reinforced concrete frame structures under 128 seismic waves were carried out by using the OpenSees software.The effects of the steel yield strength, elastic modulus, steel structure quality, damping ratio, compressive strength of concrete,concrete elasticity modulus and intensity of ground motions were considered.Besides the above random variables, the influences of the yield strength and elastic modulus of the section steel were also considered.4 kinds of seismic demands for 2 kinds of frame structures were obtained respectively, namely, the top displacement, base shear, maximum floor acceleration and maximum interlayer displacement angle.The sensitivity ranking of each random variable was achieved, making use of two analysis methods, the local sensitivity analysis and global sensitivity analysis for the reinforced concrete frame structures.The results by the two methods were compared, and the random variables of significant influence and the random variables of smaller influence were found by both of the methods.The calculation and analysis results may be helpful for improving the calculation efficiency of the sensitivity analysis of seismic demands, in frame structure design.
关键词
地震需求 /
非线性时程分析 /
敏感性分析
{{custom_keyword}} /
Key words
seismic demands /
nonlinear time history analysis /
sensitivity analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Ge H B, Susantha K A S, Satake Y, et al. Seismic demand predictions of concrete-filled steel box columns[J]. Engineering Structures, 2003, 25(3):337-345.
[2] Fajfar Peter, Vidic Tomaž, Fischinger Matej. Seismic demand in medium-and long‐period structures[J]. Earthquake Engineering & Structural Dynamics, 2010, 18(8):1133-1144.
[3] 陈亮, 李建中.大跨径桥梁结构概率地震需求分析中地面运动强度参数的优化选择[J]. 振动与冲击, 2011,30(10):91-97.
Chen Liang,Li Jianzhong. Optimal selection of ground motion intensity measures for probabilistic seismic demand analysis of long-span bridge structures[J]. JOURNAL OF VIBRATION AND SHOCK, 2011, 30(10): 91-97.
[4] 刘骁骁,吴子燕,王其昂. 基于多维性能极限状态的概率地震需求分析[J]. 振动与冲击, 2017, 36(1): 181-187.
Liu Xiaoxiao,Wu Ziyan,Wang Qiang. Multidimensional performance limit state for probabilistic seismic demand analysis[J]. JOURNAL OF VIBRATION AND SHOCK, 2017, 36(1): 181-187.
[5] Tubaldi E, Barbato M, Dall’Asta A. Influence of Model Parameter Uncertainty on Seismic Transverse Response and Vulnerability of Steel-Concrete Composite Bridges with Dual Load Path[J]. Journal of Structural Engineering, 2012, 138(3):363-374.
[6] Li L, Lu Z, Feng J, et al. Moment-independent importance measure of basic variable and its state dependent parameter solution[J]. Structural Safety, 2012, 38(38):40-47.
[7] 崔利杰, 吕震宙, 赵新攀. 矩独立的基本变量重要性测度及其概率密度演化解法[J]. 中国科学:技术科学, 2010,40(5):557-564.
Lijie C, Zhenzhou L, Xinpan Z. Moment independent basic variable importance measure and its probability density evolution solution[J]. Chinese Science: Technology Science, 2010, 40(5):557-564.
[8] Ratto M, Pagano A, Young P C. Non-parametric estimation of conditional moments for sensitivity analysis[J]. Reliability Engineering & System Safety, 2009, 94(2):237-243.
[9] Cui L J, Lu Z Z, Zhao X P.Moment-independent importance measure of basic random variable and its probability density evolution solution[J]. Science China Technological Sciences, 2010, 53(4):1138-1145.
[10] Chen J B, Li J. Dynamic response and reliability analysis of non-linear stochastic structures[J]. Probabilistic Engineering Mechanics, 2005, 20(1):33-34.
[11] Zhao Y G, Ono T. Moment methods for structural reliability[J]. Structural Safety, 2001, 23(1):47-75.
[12] Borgonovo E. A new uncertainty importance measure[J]. Reliability Engineering&System safety, 2007, 92(6):771-784.
[13] Porter K A, Beck J L, Shaikhutdinov R V. Sensitivity of Building Loss Estimates to Major Uncertain Variables[J]. Earthquake Spectra, 2002, 18(4):719-743.
[14] GB50010-2010,钢筋混凝土结构设计规范[S].
GB50010-2010,Code for design of reinforced concrete frame structure[S].
[15] Mirza S A, Macgregor J G. Variability of mechanical properties of reinforced bars[J]. Journal of Structural Division, 1979, 105(5):921-937.
[16] Porter K A, Beck J L, Shaikhutdinov R V. Sensitivity of Building Loss Estimates to Major Uncertain Variables[J]. Earthquake Spectra, 2002, 18(4):719-743.
[17] Mirza S A, Hatzinikolas M, Macgregor J G. Statistical Descriptions of Strength of Concrete[J]. Journal of the Structural Division, 1979, 105(6):1021-1037.
[18] GB50011-2010,建筑抗震设计规范[S].
GB50011-2010,Code for seismic design of buildings[S].
[19] Menegotto M. Method of Analysis for Cyclically Loaded R. C. Plane Frames Including Changes in Geometry and Non-Elastic Behavior of Elements under Combined Normal Force and Bending[C]// Proc. of IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads. 1973:15-22.
[20] Scott B D. Stress-Strain Behavior of Concrete by Overlapping Hoops at Low and High Strain Rates[J]. Aci Journal, 1982, 79(1):13-27.
[21] Taucer F F, Spacone E, Filippou F C. A Fiber Beam-Column Element for Seismic Response Analysis of Reinforced Concrete Structures[J]. 1991.
[22] Scott D W. Multivariate density estimation: theory, practice and visualization[M]. John Wiley & Sons, 2015.
[23] Silverman B W. Density estimation for statistics and Data analysis[M]. CRC press, 1986.
[24] Botev Z I, Grotowski J F, Kroese D P. Kernel density estimation via diffusion[J]. Annals of Statistics, 2010, 38(5):2916-2957.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}