正则化Bouc-Wen模型的参数研究及其在金属阻尼器中的应用

李宗京 1,2,舒赣平 1,2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (22) : 128-135.

PDF(1546 KB)
PDF(1546 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (22) : 128-135.
论文

正则化Bouc-Wen模型的参数研究及其在金属阻尼器中的应用

  • 李宗京 1,2 , 舒赣平 1,2
作者信息 +

Parametric study of the normalized bouc-wen model and its application in metallic dampers

  • LI Zongjing1,2,SHU Ganping1,2
Author information +
文章历史 +

摘要

针对经典Bouc-Wen模型中存在冗余参数的情况,介绍了一种无冗余参数的正则化Bouc-Wen模型。基于理论推导及编制的Matlab程序,对正则化Bouc-Wen模型各参数与其所描述的金属阻尼器滞回力学参数之间的关系进行了研究。采用局部敏感性分析方法基于两种不同的敏感性评价指标对正则化Bouc-Wen模型各参数的敏感性进行了分析。提出了基于改进模拟退火算法的参数拟合方法并进行试验验证。研究结果表明,金属阻尼器的初始弹性刚度 kd 及屈服力 Fdy 均由kx、kw、ρ三个参数共同决定,屈服后刚度 k′d 由参数 kx 决定,屈服位移 udy 由参数 ρ 决定,转向刚度 ks 与初始弹性刚度 kd 之间的相对关系由参数 σ 决定,弹塑性过渡段的圆滑度由参数 n 决定。正则化Bouc-Wen模型中的 kw、ρ 两个参数具有较高的敏感性,σ、kx、n 三个参数具有较低的敏感性。改进的模拟退火算法能够有效实现对正则化Bouc-Wen模型的参数拟合,金属阻尼器试验滞回曲线与拟合曲线能够较好吻合。

Abstract

Due to the parameter redundancy in the traditional Bouc-Wen model, a normalized form of the Bouc-Wen model was introduced.Then the relations between the parameters of the normalized Bouc-Wen model and the hysteretic parameters of the corresponding metallic damper were studied.A parameter sensitivity analysis was also conducted for the normalized Bouc-Wen model by using the local sensitivity analysis method based on two different sensitivity indices.A parameter fitting method was also proposed using a modified simulated annealing algorithm and verified by experiments.The results show that the initial elastic stiffness kd and the yield force Fdy are determined by the parameters kx, kw and ρ in the normalized Bouc-Wen model, the post-yield stiffness k′d is determined by the parameter kx, the yield displacement udy is determined by the parameter ρ, the relation between the shift stiffness ks and the initial elastic stiffness kd is determined by the parameter σ, and the smoothness of the transition from elastic to plastic response is determined by the parameter n.The parameters kw and ρ exhibit higher sensitivity, while σ, kx and n exhibit lower sensitivity.The modified simulated annealing algorithm is able to identify the parameters of the normalized Bouc-Wen model effectively, and the simulation hysteresis curves fit well with those by experiments.

关键词

正则化Bouc-Wen模型 / 金属阻尼器 / 滞回参数 / 模拟退火算法

Key words

normalized Bouc-Wen model / metallic damper / hysteretic parameters / simulted annealing algorithm

引用本文

导出引用
李宗京 1,2,舒赣平 1,2. 正则化Bouc-Wen模型的参数研究及其在金属阻尼器中的应用[J]. 振动与冲击, 2018, 37(22): 128-135
LI Zongjing1,2,SHU Ganping1,2. Parametric study of the normalized bouc-wen model and its application in metallic dampers[J]. Journal of Vibration and Shock, 2018, 37(22): 128-135

参考文献

[1] Yao T P. Concept of structural control [J]. Journal of the Structure Division, ASCE,1972, 98(11): 1567–1575.
[2] Housner G W, Bergman L A, Soong T T, et al. Structural control past, present, and future [J]. Journal of Engineering Mechanics, 1997, 123(9): 897–971.
[3] 吴从晓, 周云, 王廷彦. 金属耗能器的类型、性能及工程应用[J]. 工程抗震与加固改造, 2006, 28(1): 87–94.
Wu Cong-xiao, Zhou Yun, Wang Ting-yan. Types and Performance of Metallic Dampers and Their Engineering Applications. Earthquake Resistant Engineering and Retrofitting, 2006, 28(1): 87–94.
[4]  Chen Z, Ge H, Usami T. Hysteretic Model of Stiffened Shear Panel Dampers[J]. Journal of Structural Engineering, 2006, 132(3): 478–483.
[5] Xia C, Hanson R D. Influence of ADAS element parameters on building seismic response [J]. Journal of Structural Engineering, 1992, 118(7): 1903–1918.
[6] 邢书涛, 郭迅. 一种新型软钢阻尼器力学性能和减震效果的研究[J]. 地震工程与工程振动, 2003, 23(6): 179–186.
Xing Shu-tao, Guo Xun. Study on mechanical behavior and effectiveness of a new type of mild steel damper. Earthquake Engineering and Engineering Vibration, 2003, 23(6): 179–186.
[7] Nakashima M, Akazawa T, Tsuji B. Strain-hardening behavior of shear panels made of low-yield steel. II: model [J]. Journal of Structural Engineering, 1995, 121(12): 1750–1757.
[8] 李玉顺, 大井谦一, 沈世钊. 极低屈服点软钢阻尼器恢复力模型的研究[J]. 地震工程与工程振动, 2004, 24(6): 142–153.
Li Yu-shun, Kenichi Ohi, Shen Shi-zhao. Study on hysteresis loops of dampers made of ultra low yield point steel [J]. Earthquake Engineering and Engineering Vibration, 2004, 24(6): 142–153.
[9] Sireteanu T, Mitu A M, Giuclea M, et al. A comparative study of the dynamic behavior of Ramberg–Osgood and Bouc–Wen hysteresis models with application to seismic protection devices [J]. Engineering Structures, 2014, 76: 255–269.
[10] Chan R W K, Albermani F, Williams M S. Evaluation of yielding shear panel device for passive energy dissipation [J]. Journal of Constructional Steel Research, 2009, 65(2): 260–268.
[11] Shih M, Sung W. A model for hysteretic behavior of rhombic low yield strength steel added damping and stiffness. Computers and Structures, 2005, 83(12–13): 895–908.
[12] 北京金土木软件技术有限公司, 中国建筑标准设计研究院编著. SAP2000中文版使用指南[M]. 北京: 人民交通出版社, 2006.
Civil King Software Technology Co., Ltd, China Institute of Building Standard Design & Research. SAP2000 Chinese version user guide[M]. Beijing, China Communications Press, 2006.
[13] 翁大根, 杨凯, 张超. 消能减震结构附加金属消能器的简化设计方法[J]. 福州大学学报(自然科学版), 2013, 41(4): 629–639.
Weng Da-gen, Yang Kai, Zhang Chao. A simplified design procedure for energy-dissipated structure with metallic dampers. Journal of Fuzhou University(Natural Science Edition), 2013, 41(4): 629–639.
[14] Bouc R. Forced vibration of mechanical systems with hysteresis [A]. In: Proceedings of the Fourth Conference on Nonlinear Oscillation [C]. Prague, Czechoslovakia, 1967, p. 315.
[15] Wen Y. K. Method for random vibration of hysteretic systems [J]. Journal of Engineering Mechanics (ASCE), 1976, 102(2): 249–263.
[16] Ma F, Zhang H, Bockstedte A, Foliente G C, et al. Parameter analysis of the differential model of hysteresis [J]. Journal of Applied Mechanics (ASME), 2004, 71(3): 342–349.
[17] Ikhouane F, Rodellar J. Systems with hysteresis: analysis, identification and control using the Bouc-Wen model [M]. Chichester: John Wiley & Sons, Ltd., 2007.
[18] Ikhouane F, Gomis-Bellmunt O. A limit cycle approach for the parametric identification of hysteretic systems[J]. Systems & Control Letters, 2008, 57(8): 663–669.
[19] Hamby D M. A review of techniques for parameter sensitivity analysis of environmental models[J]. Environmental Monitoring and Assessment, 1994, 32(2): 135–154.
[20] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, Teller E. Equation of state calculations by fast computing machines [J]. Journal of Chemical Physics, 1953, 21(6):1087–1092.
[21] Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing [J]. Science, 1983, 220(4598): 671–680.
[22] Ingber L. Simulated annealing: practice versus theory [J]. Mathematical and Computer Modelling, 1993, 18(11): 29–57.
[23] Tsai K C, Chen H W, Hong C P, Su Y F. Design of steel triangular plate energy absorbers for seismic-resistant construction [J]. Earthquake Spectra, 1993, 9(3): 505–528.
[24] Mahmoudi M, Abdi M G. Evaluating response modification factors of TADAS frames [J]. Journal of Constructional Steel Research, 2012, 71: 162–170.
[25] Mohammadi R K, Nasri A, Ghaffary A. TADAS dampers in very large deformations [J]. International Journal of Steel Structures, 2017, 17(2): 515–524.

PDF(1546 KB)

597

Accesses

0

Citation

Detail

段落导航
相关文章

/