基于混合插值与多项式修正的局部特征尺度分解端点效应抑制方法

张征1,崔伟成2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (22) : 181-186.

PDF(1960 KB)
PDF(1960 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (22) : 181-186.
论文

基于混合插值与多项式修正的局部特征尺度分解端点效应抑制方法

  • 张征1,崔伟成2
作者信息 +

Mothod for restraining the end-effect of local characteristic-scale decomposition based on the mixed interpolation and polynomial correction

  • ZHANG Zheng1,CUI Weicheng2
Author information +
文章历史 +

摘要

局部特征尺度分解是一种有效的自适应分解方法,广泛地应用于轴承、齿轮等旋转机械的故障诊断中。为了提高分解质量,给出了一种混合插值与多项式修正的端点效应抑制方法。首先,对端点邻域数据段,采用线性方法由均值点插值均值曲线;然后,将端点邻域插值的均值曲线与中间数据段合并,按照三次样条方法插值形成均值曲线;最后,在端点邻域,采用多项式拟合方法修正均值曲线,保证所得分量的光滑性。通过仿真数据和轴承内圈故障振动数据的分析,验证了方法的有效性。

Abstract

The local characteristic-scale decomposition is an effective adaptive decomposition method, which has been widely applied in the diagnosis of rotating mechanical faults, such as bearing and gear faults.In order to improve the decomposition quality, an end-effect suppression method was given based on the mixed interpolation and polynomial correction.First, the data segment of the endpoint neighborhood was linearly interpolated by means of mean point data.Next, the mean curve of the endpoint neighborhood was combined with the middle data segment, and the mean curve was formed according to the third order spline interpolation.Then, the mean curve of the endpoint neighborhood was corrected by the cubic polynomial method, and the smoothness of the resulting component was guaranteed.The analysis results of the simulated data and real bearing fault data show that the method can restrain the end-effect of local characteristic-scale decomposition effectively.

关键词

局部特征尺度分解 / 端点效应 / 混合插值 / 多项式修正

引用本文

导出引用
张征1,崔伟成2. 基于混合插值与多项式修正的局部特征尺度分解端点效应抑制方法[J]. 振动与冲击, 2018, 37(22): 181-186
ZHANG Zheng1,CUI Weicheng2. Mothod for restraining the end-effect of local characteristic-scale decomposition based on the mixed interpolation and polynomial correction[J]. Journal of Vibration and Shock, 2018, 37(22): 181-186

参考文献

[1] 屈梁生, 张西宁, 沈玉娣. 机械故障诊断理论与方法[M]. 西安: 西安交通大学出版社, 2009.
QU Liang-sheng, Zhang Xi-ning, SHEN Yu-di. Mechanical fault diagnosis theory and method [M]. Xi'an: Xi'an Jiaotong University press, 2009.
[2] HUANG N E, SHEN Z, LONG R S, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc. Roy. Soc. London, 1998, 454: 903-995.
[3] HUANG N E, Shen Z, Long S R. A new view of nonlinear water waves: the Hilbert spectrum[J]. Annual review of fluid mechanics, 1999, 31(1): 417-457.
[4] HUANG N E,WU Z H. A review on Hilbert–Huang transform: Method and its applications to geophysical studies[J]. Adv. Adapt. Data Anal, 2009, 1: 1-23.
[5] FREI M G, OSORIO I. Intrinsic time-scale decomposition: Time-frequency-energy analysis and real-time filtering of non-stationary signals[J].  Proc. Royal Soc, 2007, 463: 321-342.
[6] 杨宇, 曾鸣, 程军圣. 局部特征尺度分解方法及其分解能力研究[J]. 振动工程学报, 2012, 25(5): 602 -609.
YANG Yu, ZENG Ming, CHENG Jun-sheng. Research on local characteristic-scale decomposition and its capacities[J]. Journal of Vibration Engineering,2012,25(2):215-220.
[7] 程军圣, 郑近德, 杨宇. 一种新的非平稳信号分析方法—局部特征尺度分解法[J]. 振动工程学报, 2012, 25(2): 215-220.
CHENG Junsheng,ZHENG Jinde,YANG Yu. A new non-stationary signal analysis approach - the local characteristic-scale decomposition method[J]. Journal of Vibration Engineering,2012,25(2):215-220.
[8] 杨宇, 曾鸣, 程军圣. 局部特征尺度分解方法及其分量判据研究[J]. 中国机械工程, 2013, 24(2): 195-208.
YANG Yu, ZENG Ming, CHENG Jun-sheng. Research on local characteristic-scale decomposition and its stopping criteria[J]. China Mechanical Engineering, 2013, 24(2): 195-208.
[9] 胥永刚,崔涛,马朝永,等. 基于LCD和Teager能量算子的滚动轴承故障诊断[J]. 北京工业大学学报, 2015, 41(3): 340 -346.
XU Yong-gang,CUI Tao,MA Chao-yong,et al. Fault diagnosis of bearing based on LCD and Teager energy operator[J]. Journal of Beijing University of Technology, 2015, 41(3): 340 -346.
[10] 程军圣,杨怡,杨宇. 局部特征尺度分解方法及其在齿轮故障诊断中的应用[J]. 机械工程学报,2015, 48(9):64-71.
CHENG Jun-sheng, YANG Yi, YANG Yu. Local characteristic-scale decomposition method and its application to gear fault diagnosis[J]. Chinese Journal of  Mechanical  Engineering, 2015, 48(9):64-71.
[11] 戴豪民,许爱强. 基于张力格林样条的EMD均值曲线插值方法[J]. 计算机工程与设计,2015,36 (2):401-405.
DAI Hao-min, XU Ai-qiang. Inerpolation approach of mean curve for EMD basced on Green’s spline intension [J]. Computer Engineering and Design,2015,36 (2):401-405.
[12] 程军圣,李海龙,杨宇. 基于BLCD和双谱的齿轮故障诊断方法[J]. 振动与冲击,2013,32 (8):31-35.
CHENG Jun-sheng, LI Hai-long, YANG Yu. A gear fault diagnosis method based on BLCD and wavelet domain bispectrum[J]. Journal of Vibration and Shock,2013,32 (8):31-35.
[13] 程军圣,于德介,杨宇. 基于支持矢量回归机的Hilbert-Huang变换端点效应问题的处理方法[J]. 机械工程学报,2006, 42(4):23-31.
Cheng Junsheng, Yu Dejie, Yang Yu. Process method for end effects of Hilbert-Huang transform based on support vector regression machine[J]. Chinese Journal of  Mechanical  Engineering. 2006, 42(4):23-31.
[14] 黄大吉,赵进平,苏纪兰. 希尔伯特-黄变换的端点延拓[J]. 海洋学报,2003, 25(1):1-9.
Huang Da-ji, Zhao Jin-ping, Su Ji-lan. Proactical implementation of the Hilbert-Huang transform algorithm[J]. Journal of Oceanography. 2003, 25(1):1-9.
[15] Huang N E, Wu M L C, Long S R, et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2003, 459(2037): 2317-2345.
[16] Case Western Reserve University Bearing Data Center [EB/OL]. http: //csegroups.case.edu/bearingdatacenter.

PDF(1960 KB)

357

Accesses

0

Citation

Detail

段落导航
相关文章

/