海冰作用下锥体结构对近海桩柱式风力机结构动态响应影响

许子非,叶柯华,李 春,丁勤卫,杨 阳

振动与冲击 ›› 2018, Vol. 37 ›› Issue (22) : 225-230.

PDF(1582 KB)
PDF(1582 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (22) : 225-230.
论文

海冰作用下锥体结构对近海桩柱式风力机结构动态响应影响

  • 许子非,叶柯华,李 春,丁勤卫,杨 阳
作者信息 +

Influences of the cone structure of a monopile offshore wind turbine on its dynamic responses under ice loading condition

  • XU Zifei, YE Kehua, LI Chun, DING Qinwei, YANG Yang
Author information +
文章历史 +

摘要

基础结构的稳定是海上风力机安全运行的根本保障,以NREL 5 MW风力机为研究对象,基于Ralston理论建立海冰载荷,同时并考虑湍流风作用,研究安装不同锥角的锥体结构风力机结构动态响应并与未安装锥体结构的风力机进行对比,结果表明,锥体结构能有效降低海冰载荷,减小塔顶加速度及塔顶位移。当锥体角度由70°减小至40°时,海冰载荷减小83.8%,塔顶平均加速度减小43.1%。较之于无锥体结构时,安装40°锥体结构使得塔架一阶固有频率与风轮一阶固有频率处的塔顶位移幅值减小45%与85%。

Abstract

The support structure stability is the fundamental guarantee for the operation safety of offshore wind turbines.A NREL 5 MW wind turbine was selected as the baseline turbine and the ice loads were estimated by using the Ralston theory and considering the turbulent wind.The dynamic behaviors of the wind turbine tower installed with a cone structure of different cone angle were inspected and compared with those of the baseline turbine.The results show that the cone structure has significant effect on the reducing of ice loads, tower top acceleration and displacement.The average ice load and tower top acceleration in the case of 40° cone angle will be respectively reduced by 83.8% and 43.1% when the cone angle changes to 70°.Comparing with the baseline turbine, the tower-top displacements at the first order natural frequencies of the tower and the wind wheel in the case of 40° cone angle are reduced by 45% and 80% respectively.

关键词

风力机 / 锥体 / 海冰载荷 / 动态响应 / 桩柱式基础

Key words

wind turbine / cone structure / ice load / dynamic response / monopile foundations

引用本文

导出引用
许子非,叶柯华,李 春,丁勤卫,杨 阳. 海冰作用下锥体结构对近海桩柱式风力机结构动态响应影响[J]. 振动与冲击, 2018, 37(22): 225-230
XU Zifei, YE Kehua, LI Chun, DING Qinwei, YANG Yang. Influences of the cone structure of a monopile offshore wind turbine on its dynamic responses under ice loading condition[J]. Journal of Vibration and Shock, 2018, 37(22): 225-230

参考文献

[1] GWEC. Global wind report[R]. Washington D.C: Global Wind Energy Council, 2016.
[2] 李正泉,宋丽莉,马浩,等.海上风能资源观测与评估研究进展[J].地球科学进展,2016,31(8):800-810.
LI Zheng-quan, SONG Li-li, MA Hao, et al. Review of Methodologies for Offshore Wind Resource Observation and Assessment[J]. Advances in earth science, 2016, 31(8):800-810.
[3] 李春,叶舟,高伟,等.现代陆海风力机计算域仿真[M].上海:上海科学技术出版社,2012
[4] TEMPEL J, DIEPEVEEN N, VRIES W , et al. Offshore environmental loads and wind turbine design: impact of wind, wave, currents and ice[J]. Wind Energy Systems: Optimising Design and Construction for Safe and Reliable Operation, 2010: 463-478.
[5] Zhengquan Li,Shengjun Chen, Hao Ma, et al. Design defect of wind turbine operating in typhoon activity zone[J]. Engineering Failure Analysis 2013, 27(27):165-172.
[6] Chen X, Xu J Z. Structural failure analysis of wind turbines impacted by super typhoon Usagi[J]. Engineering Failure Analysis, 2016, 60: 391-404.
[7] 高月文,李春,叶舟,等. 海上风力机桩柱式结构动力响应分析[J]. 上海理工大学学报,2013,35(6):591-595.
 GAO Yue-wen, LI Chun, YE Zhou, et al. Dynamic response analysis of pile type structure offshore wind turbine[J]. J. University of Shanghai for science and technology, 2013, 35(6):591-595.
[8] 陈严,蔡安民,叶枝全,等. 近海风力机在极限波浪作用下的初步计算分析[J]. 太阳能学报,2008,29(2):180-187.
 CHEN Yan, CAI An-min, YE Zhi-quan, et al. Primary calculation and analysis of the offshore wind turbine under the action extreme wave[J]. Acta Energiae solaris sinica, 2008, 29(2):180-187.
[9] 陈法波,李昕,周晶. 近海风力涡轮机所受随机空气动力荷载模拟研究[J]. 太阳能学报,2011,32(10):1528-1532.
 CHEN Fa-bo, LI Xin, ZHOU Jing. Simulation of random aerodynamic loads of offshore wind turbine[J]. Acta Energiae solaris sinica, 2011, 32(10):1528-1532.
[10] 杨阳,李春,缪维跑等.湍流风场与地震激励联合作用下风力机结构动力学响应[J].振动与冲击,2015,34(21):137-143.
YANG Yang, LI Chun, MIAO Wei-pao, et al. Structural dynamic responses of a wind turbine under turbulent wind combined with seismic motion[J]. Journal of Vibration and Shock, 2015, 34(21):137-143.
[11] 李润培,陈伟刚,顾永宁.船舶与海洋碰撞的动力响应分析[J].上海交通大学学报,1996,30(2):40-47.
  LI Qun-pei, CHEN Wei-gang, GU Yong-ning. Dynamic Analysis of ship/Platform Collision[J]. Journal of Shanghai Jiaotong university, 1996, 30(2):40-47.
[12] Engelbrektson A. Dynamic ice loads on lighthouse structure[C]. Proceedings 4th International Conference on Port and Ocean Engineering, St. John’s Newfoundland, Canada, 1977(2):654-663.
[13] Engelbrektson A. Observation of a resonance vibrating lighthouse structure in moving ice[C]. Proceedings of International Conference on Port and Ocean Engineering, 1983.
[14] Määttänen M. Ice force design and measurement of conical structures[C]. Proceedings of 12th International Symposium on Ice, Trondheim, Norway, 1994(1):401-410.
[15] Määttänen M, Hoikkanen A N, Avis J. Ice failure and ice loads on a conical structure KEMI-I cone full scale ice force measurement date analysis[C]. Proceeding of 19th IAHR ice Symposium, Beijing, China, 1996(1):8-16.
[16] Wang Sheng-yong, Yue Qian-jin, Zhang Da-yong. Ice-induced non-structure vibration reduction of jacket platforms with isolation cone system[J]. Ocean Engineering, 2013, 7(4):118-123.
[17] Rashedi A, Sridhar I, Tseng K J. Multi-objective material selection for wind turbine blade and tower: Ashby’s approach[J]. Materials & Design, 2012, 37:521-532.
[18] 王强.水平轴风力机三维空气动力学计算模拟研究[D].中国科学院大学,2014.
 WANG Qiang. Study on 3D Aerodynamic Computatinal Models of HAWT[D]. University of Chinese Academy of Sciences, 2014.
[19] ATUL SUDHAKAR PATIL.Response Of A Wind Turbine Structure To Strong Ground Motions And High Velocity Winds[D]. Florida State University, 2015.
[20] 安利强,孙少华,周邢银.风波联合作用下5MW海上风力机的疲劳载荷特性分析[J].可再生能源,2014,32(7):966-972.
 AN Li-qiang, SUN Shao-hua, ZHOU Xi-yin. Fatigue load characteristic analysis of 5 MW offshore wind turbine under combined wind and wave loads[J]. Renewable Energy Resources, 2014, 32(7):966-972.
[21] Jonkman J M, Buhl Jr M L. FAST user’s guide[J]. National Renewable Energy Laboratory, Technical Report No. NREL/EL-500-38230, 2005.
[22] Laino D J, Hansen A C. User’s guide to the wind turbine aerodynamics computer software AeroDyn[J]. Prepared for NREL Under Subcontract, University of Utah, Salt Lake City, Technical Report No. TCX-9-29209-01, 2002.
[23] 熊海洋.基于FAST软件的大型风力发电机组系统建模与控制研究[D].重庆:重庆大学,2014.
XIONG Haiyang. Research on modeling and control of large-scale wind turbines system which is based on FAST software[D]. Chongqing: Chongqing University, 2014.
[24] Jonkman J M, Buhl M L, Jr. FAST user’s guide[R]. London, UK: National Renewable Energy Laboratory, 2005.
[25]  刘延柱,洪嘉振.多刚体系统动力学[M].北京:高等教育出版社,1989.
 LIU Yan-zhu, HONG Jia-zhen. Multibody Dynamics[M]. Peking: Higher Education Press, 1989.
SHI Qing-zeng, PENG Zhong. Discussion on the rational form of conical structure and the rationality of designing the cone on the cylinder for ice force condition[J]. China Offshore Oil And Gas,2005, 17(5): 342-346.
[26] Ralston T D. Ice force design consideration for conical offshore structures[J]. Force, 1977, 2(6): 741-752.
[27] Barker A, Timco G, Gravesen H, et al. Ice loading on Danish wind turbines : Part 1: Dynamic model tests[J]. Cold Regions Science & Technology, 2005, 41(1):1-23.
[28] Finn D W, Jones S J, Jordaan I J. Vertical and inclined edge-indentation of freshwater ice sheets[J]. Cold Regions Science & Technology, 1991, 22(1):1-18.
[29] Jonkman B J, Buhl M L. Turbsim user’s guide[J]. National Renewable Energy Laboratory, Technical Report No.NREL/EL-500-36970, 2004
[30] Burton T, Sharpe D, Jenkins N, et al. Wind energy handbook[M]. John Wiley & Sons, 2001.

PDF(1582 KB)

1932

Accesses

0

Citation

Detail

段落导航
相关文章

/