基于流固耦合的立式拱顶储罐油气爆炸数值模拟

欧益宏1,李润1,袁广强2,李国庆1,王世茂1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (22) : 231-237.

PDF(1550 KB)
PDF(1550 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (22) : 231-237.
论文

基于流固耦合的立式拱顶储罐油气爆炸数值模拟

  • 欧益宏1,李润1,袁广强2,李国庆1,王世茂1
作者信息 +

Numerical simulation on the gasoline-air mixture explosion in vertical dome roof oil tanks with consideration of the fluid-structure coupling effect

  • OU Yihong1, LI Run1, YUAN Guangqiang2, LI Guoqing1,WANG Shimao1
Author information +
文章历史 +

摘要

针对1000m3立式拱顶储罐内部油气爆炸进行了数值模拟,并对625L模拟储罐进行了模型实验验证,对耦合条件以及非耦合条件下储罐内部爆炸流场发展,不同测点超压变化进行了对比分析,同时对耦合条件下储罐结构响应进行了研究。结果表明:(1)非耦合条件与耦合条件下流场发展以及超压变化趋势基本相同,但耦合条件下储罐内部完全燃烧时间比非耦合条件下慢60ms,超压荷载峰值比非耦合条件下小10%左右。(2)爆炸时,储罐顶部变形最大,最大应力区域出现在顶-壁,底-壁连接处,考虑到实际工程情况,设计时应遵循“弱顶盖连接设计”原则。

Abstract

A numerical simulation was carried out to investigate the characteristics of gasoline-air mixture explosion in a 1 000 m3 vertical vault storage tank.Model experiments on a 625 L simulation tank were also performed for verification.The variations of the flow field and overpressures at different measuring points were analyzed under the conditions of fluid-structure coupling and uncoupling respectively, and the tank structure responses were studied under the coupling condition.The results show that: ① the variations of flow field and overpressure under coupling condition and uncoupling condition are basically the same.Under the condition of coupling, the tank internal combustion time is fewer than under uncoupled condition by 60 ms, the overpressure peak load is 10% smaller than under uncoupled condition.② During the process of explosion, the deformation at the top of the tank is the largest, and the maximum stress appears at the top-wall and bottom-wall connection areas.Considering the actual engineering conditions, the principle of “weak roof connection design” should be followed in design.

关键词

拱顶储罐 / 油气 / 爆炸 / 流固耦合 / 数值模拟 / 湍流

Key words

 vault storage tank / gasoline-air / explosions / fluid-structure coupling / numerical simulation / turbulent flow

引用本文

导出引用
欧益宏1,李润1,袁广强2,李国庆1,王世茂1. 基于流固耦合的立式拱顶储罐油气爆炸数值模拟[J]. 振动与冲击, 2018, 37(22): 231-237
OU Yihong1, LI Run1, YUAN Guangqiang2, LI Guoqing1,WANG Shimao1. Numerical simulation on the gasoline-air mixture explosion in vertical dome roof oil tanks with consideration of the fluid-structure coupling effect[J]. Journal of Vibration and Shock, 2018, 37(22): 231-237

参考文献

 [1] BOARD B M I I. Buncefield major incident investigation[J]. Initial Report to the Health and Safety Commission and the Environment Agency of the investigation into the explosions and fires at the Buncefield oil storage and transfer depot, Hemel Hempstead, on 11th December, 2005.
 [2] CERANNA L, Le PICHON A, GREEN D N, et al. The Buncefield explosion: a benchmark for infrasound analysis across Central Europe[J]. Geophysical Journal International, 2009,177(2):491-508.
 [3] ATKINSON G. Blast damage to storage tanks and steel clad buildings[J]. Process Safety and Environmental Protection, 2011,89(6):382-390.
 [4] 陈思维, 杜杨, 王博. 油罐中油气爆炸规律研究[J]. 安全与环境学报, 2007(03):102-104.
CHEN Si-wei, DU Yang, WANG Bo. Study on the Explosion Rules of Oil and Gas in Tanks[J]. Journal of Safety and Environment,2007(03):102-104.
 [5] 高建丰, 杜扬, 蒋新生, 等. 油气爆炸冲击载荷对金属油罐断裂损伤的模拟实验研究[J]. 中国储运, 2016(03):129-134.
GAO Jian-feng, DU Yang, JIANG Xin-sheng, et al. Simulation Experiment on Fracture Damage of Metallic Tanks Caused by Explosive Impact Loading[J].China storage and transportation,2016(03):129-134.
 [6] MOVILEANU C, GOSA V, RAZUS D. Explosion of gaseous ethylene–air mixtures in closed cylindrical vessels with central ignition[J]. Journal of hazardous materials, 2012,235:108-115.
 [7] POLUDNENKO A Y. The Role of Flame-Generated Turbulence in the Deflagration-to-Detonation Transition[J].
 [8] 王世茂, 杜扬, 高建丰, 等. 半地下覆土立式油罐内部油气爆炸冲击荷载实验研究[J]. 振动与冲击, 2017(22):239-244.
WANG Shi-mao, DU Yang, GAO Jian-feng, et al. Experimental Study on Explosion Impact Load of Semi - underground Cover Vertical Oil Tank[J]. Journal of Vibration And Shock,2017(22):239-244.
 [9] QIAO A, ZHANG S. Advanced CFD modeling on vapor dispersion and vapor cloud explosion[J]. Journal of loss prevention in the process industries, 2010,23(6):843-848.
[10] WEN X, YU M, LIU Z, et al. Large eddy simulation of methane–air deflagration in an obstructed chamber using different combustion models[J]. Journal of Loss Prevention in the Process Industries, 2012,25(4):730-738.
[11] HU K, ZHAO Y. Numerical simulation of internal gaseous explosion loading in large-scale cylindrical tanks with fixed roof[J]. Thin-Walled Structures, 2016,105:16-28.
[12] 胡可, 赵阳, 王震. 锥顶钢储罐内部可燃气体爆炸冲击荷载的CFD模拟[J]. 振动与冲击, 2015(12):150-156.
HU Ke, ZHAO Yang, WANG Zhen. CFD Simulation of Explosive Impact Load of Combustible Gas Inside Conical Steel Tank[J]. Journal of Vibration And Shock,2015(12):150-156.
[13] 王震, 胡可, 赵阳. 拱顶钢储罐内部蒸气云爆炸冲击荷载的数值模拟[J]. 振动与冲击, 2013(20):35-40.
WANG Zhen, HU Ke, ZHAO Yang. Numerical simulation of steam cloud explosion impact load inside vault steel storage tank[J]. Journal of Vibration And Shock,2013(20):35-40.
[14] 胡可, 王震, 赵阳. 耦合效应对钢储罐内部爆炸冲击荷载的影响: 第十四届空间结构学术会议, 中国福建福州, 2012[C].
     Hu Ke, Wang Zhen, Zhao Yang.Effects of Coupling Effects on Explosive Impact Load in Steel Tanks: The 14th Symposium on Spatial Structure, Fuzhou, Fujian, China [2012].
[15] 庞崇安, 王震. 立式柱形钢储罐内部爆炸数值模拟及动力响应分析[J]. 爆破, 2015(02):54-58.
PANG Chong-an, WANG Zhen. Numerical Simulation and Dynamic Response Analysis of Vertical Cylindrical Steel Tank Explosion[J]. Blasting,2015(02):54-58.
[16] AUNE V, FAGERHOLT E, LANGSETH M, et al. A shock tube facility to generate blast loading on structures[J]. International Journal of Protective Structures, 2016,7(3):340-366.
[17] AUNE V, VALSAMOS G, CASADEI F, et al. Use of Damage-based Mesh Adaptivity to Predict Ductile Failure in Blast-loaded Aluminium Plates[J]. Procedia Engineering, 2017,197:3-12.
[18] 欧益宏, 李润, 袁广强, 等. 置障条件下半密闭空间油气爆炸特性实验与数值模拟[J]. 化工学报, 2017(11):4437-4444.
OU Yi-hong, LI Run, YUAN Guangqiang, et al. Experimental and Numerical Simulation on Explosive Properties of Oil and Gas in Semi - airtight Space under Barrier Condition[J]. CIESC Journal,2017(11):4437-4444.
[19] 王定贤, 王万鹏, 石培杰, 等. 柱形爆炸容器动力学响应的有限元模拟与实验检验[J]. 压力容器, 2008(07):13-16.
WANG Ding-xian, WANG Wan-peng, SHI Pei-jie, et al. Finite Element Simulation and Experimental Test of Dynamic Response of Cylindrical Explosive Vessel[J]. Pressure Vessel Technology,2008(07):13-16.
[20] 沈沉, 杨志刚. Ahmed模型的流固耦合数值计算方法探索与实验验证[J]. 实验流体力学, 2014(04):37-42.
SHEN Chen, YANG Zhi-gang. Ahmed Model for Fluid-Structure Interaction Numerical Calculation Method and Experimental Verification[J]. Journal of Experiments in Fluid Mechanics,2014(04):37-42.
[21] 杜扬,李国庆,王世茂,等.障碍物数量对油气泄压爆炸特性的影响[J].化工学报,2017,68(07):2946-2955.
     DU Yang, LI Guoqing, WANG Shimao, et al. Effects of the number of obstacles on the explosion characteristics of oil and gas [J] .CIESC, 2017,68 (07): 2946-2955.
 

PDF(1550 KB)

4312

Accesses

0

Citation

Detail

段落导航
相关文章

/