基于改进均匀设计响应面的桥梁地震易损性分析

李辉辉1,李立峰1,2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (22) : 245-254.

PDF(2121 KB)
PDF(2121 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (22) : 245-254.
论文

基于改进均匀设计响应面的桥梁地震易损性分析

  • 李辉辉1,李立峰1,2
作者信息 +

Bridge fragility analysis based on an improved uniform design-response surface methodology

  • LI Huihui1 LI Lifeng1, 2
Author information +
文章历史 +

摘要

为研究传统均匀设计响应面法中设计变量多重相关性现象和变量相关性条件对地震易损性分析的影响,引入Nataf变换,结合基于样条变换的均匀设计响应面法,提出了一种基于改进均匀设计响应面的桥梁地震易损性分析方法。以一座多跨连续梁桥为例,基于OpenSees建立其动力有限元模型并进行非线性时程分析,考虑了墩柱、板式橡胶支座、铅芯橡胶支座和桥台四类构件的地震损伤,分别在考虑变量相关性前后、采用传统及改进均匀设计响应面法对算例桥梁地震易损性分析进行了比较。研究结果表明,考虑变量相关性后,改进均匀设计响应面法建立的响应面模型能更好地拟合结构功能极限状态函数;桥梁构件及系统在不同损伤状态下的损伤超越概率均有一定程度的降低;忽略变量相关性的影响、采用传统均匀设计响应面法均可能会高估桥梁结构在地震作用下的易损程度。

Abstract

The effects of multi-correlation among design variables in the traditional uniform design-response surface methodology and correlations among structural random variables on seismic fragility analysis were studied.Introducing the Nataf transformation and combining it with the uniform design-response surface methodology based on spline transformation, an alternative method for bridge seismic fragility analysis was proposed.A multi-span reinforced concrete continuous girder bridge was taken as a case-study, its finite element model was built by using the OpenSees software and a nonlinear time-history analysis was conducted.In the study, the damages of pier, lead rubber bearing (LRB), plate-type elastomeric bearing (PETB) and abutment were taken into account.Then, the traditional uniform design-response surface methodology and the improved one were applied to analyze the seismic fragility of the case-study bridge and their results were compared.It is concluded that the response surface established by the improved methodology can better fit the structure's surface limit state function.By using the improved methodology, the failure probability of bridge components and bridge system under different damage states has a certain degree of reduction.The seismic capacity of the bridge tends to be underestimated by neglecting the correlations among structural random variables and using the conventional uniform design-response surface methodology in seismic fragility analysis.

关键词

桥梁工程;地震;易损性分析 / 均匀设计响应面法;多重相关性;Nataf变换;变量相关性

Key words

bridge engineering / ground motions / seismic fragility analysis / uniform design response surface methodology / multi-correlation / Nataf transformation / correlations of random variables

引用本文

导出引用
李辉辉1,李立峰1,2. 基于改进均匀设计响应面的桥梁地震易损性分析[J]. 振动与冲击, 2018, 37(22): 245-254
LI Huihui1 LI Lifeng1, 2 . Bridge fragility analysis based on an improved uniform design-response surface methodology[J]. Journal of Vibration and Shock, 2018, 37(22): 245-254

参考文献

[1] Vamvatsikos D, Fragiadakis M. Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty [J]. Earthquake Engineering and Structural Dynamics, 2010, 39(2): 141-163.
[2] Jernigan J B, Hwang H. Development of bridge fragility curves. In: 7th US National Conference on Earthquake Engineering. 2002.
[3] Hwang H, Liu J B, Chiu Y H. Seismic fragility analysis of highway bridges [J]. Mid-American Earthquake Centre CD Release 01-06, 2001.
[4] Pang Y T, Wu X, Shen G Y, et al. Seismic fragility analysis of cable-stayed bridges considering different sources of uncertainties [J]. Journal of Bridge Engineering, 2014, 19(4): 04013015.
[5] Ramamoorthy S K, Gardoni P, Bracci J M. Probabilistic demand models and fragility curves for reinforced concrete frames [J]. Journal of Structural Engineering, 2006, 132(10): 1563-1572.
[6] Yuan X, Pandey M D. Analysis of approximations for multi-normal integration in system reliability computation [J]. Structural Safety, 2006, 28(4): 361-377.
[7] Ren W X, Fang S E, Deng M Y. Response surface–based finite-element-model updating using structural static responses [J]. Journal of Engineering Mechanics, 2010, 137(4): 248-257.
[8] Gavin H P, Yau S C. High-order limit state functions in the response surface method for structural reliability analysis [J]. Structural Safety, 2008, 30(2): 162-179.
[9] 方开泰.均匀设计与均匀设计表[M]. 北京: 科学出版社, 1994: 1-23.
FANG Kaitai. Uniform design and uniform design table [M]. Beijing: Science Press, 1994.
[10] 吕大刚,贾明明,李刚. 基于均匀设计响应面法的钢框架结构抗震可靠度分析[J].哈尔滨工业大学学报: 2011, 43(4): 1-5.
LU Dagang, JIA Mingming, LI Gang. Seismic reliability analysis of steel frame structures based on uniform design response surface method [J]. Journal of Harbin Institute of Technology, 20115, 43(4): 1-5.
[11] 胡常福,李辉辉,任伟新,等.基于响应面的新型索拱桥非线性索力优化[J].中南大学学报: 自然科学版, 2015, 46(11): 4267-4273.
HU Changfu, LI Huihui, REN Weixin, et al. Nonlinear cable force optimization of new type arch bridges with diagonal web cables based on response surface method[J]. Journal of Central South University: Natural Sciences, 2015, 46(11): 4267-4273.
[12] 王惠文. 偏最小二乘回归的线性与非线性方法[M]. 北京: 国防工业出版社, 2006: 35-38
WANG Huiwen. Partial least squares regression method and application [M]. Beijing: National Defense Industry Press, 1999: 67-88.
[13] Liu P L, Der Kiureghian A. Multivariate of distribution models with prescribed marginal and covariance [J]. Probabilistic Engineering Mechanics, 1986, (2): 105-112.
[14] 吴帅兵,张坤,李典庆.相关非正态变量变换时相关性变化对可靠度的影响[J].武汉大学学报, 2011, 44(2):151-155
WU Shuaibing, ZHANG Kun, LI Dianqing. Effect of correlation change from transformation of correlated abnormal variables on structural reliability [J].Engineering Journal of Wuhan University, 2011, 44(2): 151-155.
[15] 吴帅兵,李典庆,周创兵.结构可靠度分析中变量相关时三种变换方法的比较[J].工程力学, 2011 28(5):41-49.
WU Shuaibing, LI Dianqing, ZHOU Chuangbing. Comparison among three transformation methods for structural reliability analysis with correlated variables [J].Engineering Mechanics, 2011, 28(5):41-49.
[16] 赵威, 王伟. 非线性偏最小二乘回归方法在均匀设计响应面法中的应用[J].航空学报, 2012, 35(5): 839-847.
ZHAO Wei, WANG Wei. Application of nonlinear partial least squares regression method to response surface method with uniform design [J]. Acta Aeronautica ET Astronautica Sinica, 2012, 35(5):839-847.
[17] Nielson, B. Analytical fragility curves for highway bridges in moderate seismic zones. PhD thesis, Georgia Institute of Technology, 2005: 155-162.
[18] Mazzoni S, McKenna F, Scott M H, et al. OpenSees command language manual [M]. Pacific Earthquake Engineering Research (PEER) Centre, 2011.
[19] JTG/TB02-01-2008.公路桥梁抗震设计细则[S]. 北京:人民交通出版社,2008.
JTG/T B02-01-2008.Guidelines for seismic design of highway bridges[S]. Beijing: China Communications Press, 2008.
[20] Aviram A, Mackie K and Stojadinovic B. Guidelines for nonlinear analysis of bridge structures in california[R]. Pacific Earthquake Engineering Research Center, University of California, Berkeley, 2008.
[21] Barbato M, Gu Q, Conte J P. Probabilistic push-over analysis of structural and soil-structure systems [J]. Journal of Structural Engineering, 2010, 136(11): 1330-1341.
[22] 李立峰,吴文朋,黄佳梅等.地震作用下中等跨径RC连续梁桥系统易损性研究 [J].土木工程学报, 2012, 45(10): 152-160.
LI Lifeng, WU Wenpeng, HUANG Jiamei, et al. Study on system vulnerability of medium span reinforced concrete continuous girder bridge under earthquake excitation [J]. China Civil Engineering Journal, 2012, 45(10):152-160.
[23] CJJ 166-2011.城市桥梁抗震设计规范[S]. 北京: 中国建筑工业出版社, 2011.
CJJ 166-2011. Codes for seismic design of urban bridges[S]. Beijing: China Construction Industry Press, 2011.

PDF(2121 KB)

Accesses

Citation

Detail

段落导航
相关文章

/