[1] C. LI, et al., Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals, Mech. Syst. Signal Process. 76 (2016) 283–293.
[2] S. Polak, Gearbox and gear system problems, in: Gears Conf. London, GEAR TECH., Imeche seminar, 1999, pp. 65–72.
[3] 罗毅,甄立敬.基于小波包与倒频谱分析的风电机组齿轮箱齿轮裂纹诊断方法[J].振动与冲击, 2015, (3): 210-214.
LUO Yi, ZHEN Li-jing. Diagnosis method of turbine gearbox gearcrack based on wavelet packet and cepstrum analysis[J]. Journal of Vibration and Shock, 2015, (3): 210-214.
[4] 赵德尊,李建勇,程卫东等.变转速及齿轮噪源干扰下基于IDMM与EMD的滚动轴承故障诊断方法[J].振动与冲击, 2016, 35(10):101-107,119.
ZHAO De-zun, LI Jian-yong, CHENG Wei-dong, et al. Method for rolling element bearing fault diagnosis based on IDMM and EMD under time-varying rotational speed and gear noise[J]. Journal of Vibration and Shock, 2016, 35(10): 101-107,119.
[5] 季忠,黄捷,秦树人等.提升小波在齿轮箱故障诊断中的应用[J].振动、测试与诊断, 2010, 30(3): 291-294.
JI Zhong, HUANG Jie, QIN Shu-ren, et al. Gearbox Fault Diagnosis Using Lifting Wavelet[J]. Journal of Vibration measurement & diagnosis, 2010, 30(3): 291-294.
[6] 褚青青,肖涵,吕勇等.基于多重分形理论与神经网络的齿轮故障诊断[J].振动与冲击, 2015, (21):15-18.
CHU Qing-qing, XIAO Han, Lv Yong, et al. Gear fault diagnosis based on multifractal theory and neural network[J]. Journal of Vibration and Shock, 2015, (21):15-18.
[7] 张超,陈建军,郭迅等.基于EEMD能量熵和支持向量机的齿轮故障诊断方法[J].中南大学学报(自然科学版), 2012, 43(3): 932-939.
ZHANG Chao, CHEN Jian-jun, GUO Xun, et al. Gear fault diagnosis method based on ensemble empirical mode decomposition energy entropy and support vector machine[J]. Journal of Central South University, 2012, 43(3): 932-939.
[8] G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313 (5786) (2006) 504-507.
[9] R. Girshick, et al., Rich feature hierarchies for accurate object detection and semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014.
[10] J. Tompson, et al., Efficient object localization using convolutional networks, 2015, pp. 648-656.
[11] CHEN Z.Q,LI C,SANCHEZ R.V. Gearbox Fault Identification andClassification with Convolutional Neural Networks[J].Shock&Vi-bration,2015,2015(2):1-10.
[12] 韩涛,袁建虎,唐建,安立周. 基于MWT和CNN的滚动轴承智能复合故障诊断方法[J]. 机械传动, 2016, 40(12): 139-143.
HAN Tao, YUAN Jian-hu, TANG Jian, AN Li-zhou. An Approach of Intelligent Compound Fault Diagnosis of Rolling Bearing based on MWT and CNN[J]. Journal of Mechanical Transmission, 2016, 40(12): 139-143.
[13] 袁建虎,韩涛,唐建,安立周. 基于小波时频图和CNN的滚动轴承智能故障诊断方法[J]. 机械设计与研究, 2017, 33(02): 93-97.
YUAN Jian-hu, HAN Tao, TANG Jian, AN Li-zhou. An Approach to Intelligent Fault Diagnosis of Rolling Bearing[J]. Machine Design & Research, 2017, 33(02): 93-97.
[14] Sun W.F, Bin Y, Zeng N.Y, et al. An Intelligent Gear Fault Diagnosis Methodology Using a Complex Wavelet Enhanced Convolutional Neural Network. Materials ,2017, 10, 790.
[15] L Jing, M Zhao, P Li, X Xu, A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox[J]. Measurement, 111 (2017) 1–10.
[16] PHM data challenge 2009. Available from: <https://www.phmsociety.org/competition/PHM/09>.