预测铣削稳定性的Hamming线性多步法

智红英1,闫献国2,杜娟2,曹启超2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (22) : 67-74.

PDF(2420 KB)
PDF(2420 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (22) : 67-74.
论文

预测铣削稳定性的Hamming线性多步法

  • 智红英1 ,闫献国2,杜娟2,曹启超2
作者信息 +

Prediction of the milling stability based on the Hamming linear multistep method

  • ZHI Hongying1, YAN Xianguo2,DU Juan2,CAO Qichao2
Author information +
文章历史 +

摘要

针对铣削加工过程中产生的振动现象,提出了一种 Hamming 线性多步法(HAMM)来预测铣削加工过程中的稳定性。考虑再生颤振的铣削加工动力学方程可以表示为时滞线性微分方程,将刀齿周期划分为自由振动阶段和强迫振动阶段,对强迫振动阶段进行离散,运用HAMM方法构建状态传递矩阵,利用 Floquet 理论,判定系统的稳定性,获得系统的稳定性叶瓣图。Matlab软件仿真结果表明,HAMM方法是预测铣削稳定性的一种有效方法。随着离散数的增加,HAMM方法的收敛速度要快于一阶半离散法(1st-SDM)和二阶全离散法(2nd-FDM),离散数较少的HAMM方法能达到和离散数较多的1st-SDM方法和2nd-FDM方法的局部离散误差。此外,在单自由度和双自由度动力学模型下,由三种方法的稳定性叶瓣图可以看出,HAMM方法预测铣削稳定性的精度均好于1st-SDM方法和2nd-FDM方法,计算效率远远高于1st-SDM方法和2nd-FDM方法。实验结果表明,HAMM方法是一种有效的预测铣削稳定性的方法。

Abstract

To address the vibration phenomenon in milling process, the Hamming linear multistep method (HAMM) was proposed to predict the stability of milling process.The dynamic equation for milling process with regenerative chatter was expressed as a delay linear differential equation .The cutter tooth cycle was divided into forced and free vibration stages.The forced vibration stage was discretized and the HAMM was used to construct a state transition matrix.The stability of the system was determined based on the Floquet theory, and the corresponding stability lobe diagrams were obtained.The matlab simulation results show that the HAMM is an effective method to predict the stability of milling.With the increase of discretization number, the convergence rate of HAMMis faster than that of the first-order semi-discretization method(1st-SDM) and second-order full-discretization method(2nd-FDM).The HAMM with less discretization number can already reach the local discrete error of 1st-SDM and 2nd-FDM with more discretization numbers.In addition, for one and two degree-freedom dynamic models, the stability lobes diagrams by the three methods show that the prediction accuracy of the HAMM is better than that of the 1st-SDM and 2nd-FDM, and the computation efficiency of the HAMM is much higher than that of the 1st-SDM and 2nd-FDM.The experimental results also show that the HAAM method is effective for predicting the milling stability.

关键词

铣削加工 / 线性多步法 / 稳定性叶瓣图 / Floquet 理论

Key words

  / milling ;linear multistep method;stability lobe diagrams;Floquet theory

引用本文

导出引用
智红英1,闫献国2,杜娟2,曹启超2 . 预测铣削稳定性的Hamming线性多步法[J]. 振动与冲击, 2018, 37(22): 67-74
ZHI Hongying1, YAN Xianguo2,DU Juan2,CAO Qichao2. Prediction of the milling stability based on the Hamming linear multistep method[J]. Journal of Vibration and Shock, 2018, 37(22): 67-74

参考文献

[1] M.Wiercigroch, E.Budak. Sources of nonlinearities, hatter generation and suppression in metal cutting [J]. Philos. Trans. R. Soc. London, 2001, 359: 663 - 693.
[2] M. Kayhan, E. Budak. An experimental investigation of chatter effects on tool life [J]. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf, 2009, 223: 1455–1463.
[3] Y.Altintas, and Weck, M. Chatter Stability of Metal Cutting and Grinding [J].CIRP Annals-Manufacturing Technology, 2004, 53(2): 619-642.
[4] Altintas,Y. and Weck,M. Chatter Stability of Metal Cutting and Grinding [J]. CIRP Ann.—Manuf. Technol.,2004, 53(2) : 619-642.
[5] Balachandran,B. Nonlinear Dynamics of Milling Processes Philos [J].Trans. R. Soc. London, Ser. A, 2001,359,793–819.
[6] Budak E, Altintas Y. Analytical prediction of chatter stability in milling. I.general formulation[J]. Transactions of the ASME. Journal of Dynamic Systems, Measurement and Control,1998,
120 (1):22-30
[7] AltintasY, Budak E. Analytical prediction of stability lobes in milling[J].CIRP Annals-Manufacturing Technology,1995,44
(1) : 357 - 362.
[8] MerdolSD, Altintas Y. Multi frequency solution of chatter stability for low immersion milling [J]. Transactions of the ASME. Journal of Manufacturing Science and Engineering, 2004,126(3) : 459 - 466.
[9] Insperger,T., and Stepan,G. Semi-Discretization Method for Delayed Systems [J]. Int. J. Numer. Methods Eng.,2002,55(5): 503 - 518.
[10] Insperger, T., and Stepan,G. Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay [J].Int. J. Numer. Methods Eng.,2004,61(1) : 117–141.
[11] Insperger,T., Stepan,G., and Turi,J. On the Higher-Order Semi-Discretizations for Periodic Delayed Systems [J].J. Sound  Vib.,2008,313(1–2) : 334–341.
[12] Long,X. H., and Balachandran, B. Stability Analysis for Milling Process[J].Nonlinear Dyn.,2007,49(3) : 349–359.
[13] Long,X.H, Balachandran,B.,and Mann,B. P. Dynamics of Milling Processes With Variable Time Delays[J]. Nonlinear Dyn.,2007,47(1–3) : 49–63.
[14] 李中伟,龙新华,孟光. 基于 Magnus-Gaussian 截断的铣削系统稳定性的半离散分析法[J]. 振动与冲击,2009,28(5):69-73.
Li Zhongwei, Long Xinhua, Meng Guang. Semi-discrete Analytical Method for the Stability of Milling System Based on Magnus-Gaussian Truncation [J]. Journal of Vibration and Shock, 2009,  28 (5): 69–73 .
[15] Butcher,E.A,Ma,H.,Bueler,E., Averina,V. and Szabo,Z. Stability of Linear Time-Periodic Delay-Differential Equations Via Chebyshev Polynomials [J].Int. J. Numer. Methods Eng.,2004,59(7) : 895–922.
[16] Butcher,E.A., Bobrenkov,O.A., Bueler,E.,and Nindujarla,P. Analysis of Milling Stability by the Chebyshev Collocation Method: Algorithm and Optimal Stable Immersion Levels [J]. ASME J. Comput. Nonlinear Dyn.,2009,4(3): 031003.
[17] Y.Ding, L.Zhu, X.Zhang, H.Ding. A Full-Discretization Method for Prediction of Milling Stability [J].International Journal of Machine Tools and Manufacture,2010,50(5): 502-509.
[18] Y.Ding,L. Zhu,X.Zhang, et al. Second-order full-discretization method for milling stability prediction [J]. International Journal of Machine Tools and Manufacture,2010,50:926- 932.
[19]Q.Quo, Y.W. Sun, Y.Jiang,On the accurate calculation of milling stability limits using third-order full-discretization method [J].International Journal of Machine Tools and Manufacture. 2012,62: 61- 66.
[20] Li,M., Zhang,G., Huang,Y. Complete discretization scheme for milling stability prediction [J].Nonlinear Dyn.2013,71(1–2) : 187–199.
[21] Bayly,P. V., Halley,J. E., Mann,B. P.,and Davies, M. A. Stability of Interrupted Cutting by Temporal Finite Element Analysis [J].Journal of Manufacturing Science and Engineering,Transactions of the ASME,2003,125(2) : 220-225.
[22] Ding Y, Zhu LM, Zhang XJ, Ding H. Numerical integration method for prediction of milling stability [J]. J Manuf Sci Eng.2011,133(3):255–267.
[23] Ding Y, Zhu LM, Zhang XJ,Ding H. Milling stability analysis using the spectral method [J].Sci China Technol Sci.2011,54(12):3130 - 3136.
[24] Niu JB, Ding Y,Zhu LM,Ding H (2014) Runge–Kutta methods for a semi-analytical prediction of milling stability [J]. Nonlinear Dynamics.76(1):289–304
[25] Li ZQ, Liu Q, Ming XZ, Wang X,Dong YF. Prediction of chatter stability for milling process using Runge-Kutta-based complete discretization method[J]. Int J Adv Manuf Technol.2016,86:943-952.
[26] Zhang Z, Li HG,Meng G,Liu C.A novel approach for the prediction of the milling stability based on the Simpson method [J].Int J Mach Tools Manuf.2015,99:43–47.
[27] Qin,C.,Tao,J.,Li, L. et al. An Adams-Moulton-based method for stability prediction of milling processes [J]. Int J Adv Manuf Technol.DOI 10.1007/s00170-016-9293-x.
[28] Zhang XJ, Xiong CH,Ding Y,Ding H (2016) Prediction of chatter stability in high speed milling using the numerical differentiation method [J]. Int J Adv Manuf Technol.DOI:10.
1007/s00170-016-8708-z.

PDF(2420 KB)

Accesses

Citation

Detail

段落导航
相关文章

/