低雷诺数下直圆柱和波型圆柱受迫振动的数值研究

平焕1,张凯1,2,周岱1,3,4,包艳1,朱宏博1,韩兆龙1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (23) : 1-8.

PDF(2149 KB)
PDF(2149 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (23) : 1-8.
论文

低雷诺数下直圆柱和波型圆柱受迫振动的数值研究

  • 平焕1,张凯1,2,周岱1,3,4,包艳1,朱宏博1,韩兆龙1
作者信息 +

Numerical simulation for forced oscillations of right cylinders and  wavy cylinders under low Reynolds number

  • PING Huan1,ZHANG Kai1,2,ZHOU Dai1,3,4,BAO Yan1,ZHU Hongbo1,HAN Zhaolong1
Author information +
文章历史 +

摘要

对低雷诺数下(Re=150)的直圆柱和波型圆柱在均匀来流中横向受迫振动问题进行了数值模拟研究。通过改变运动圆柱的振动频率和振幅,对比分析直圆柱和波型圆所受的升阻力,确定各自的锁定区间并分析在锁定状态下升力及尾涡的变化特性。数值结果表明:虽然波型圆柱在静止情况下能够完全抑制卡门涡街,但在受迫振动下其升阻力随振动频率的变化趋势与直圆柱相似。波型圆柱对升力和阻力的抑制分别体现在低频和高频段。升力曲线在锁定和非锁定状态下表现不同。锁定状态下,直圆柱尾流区的泻涡模式由振动频率控制,观察到2S和C(2S)两种模式;波型圆柱尾流区观察到唯一一种泻涡模式。

Abstract

Both right cylinders and wavy ones’forced oscillations normal to incoming uniform flow under low Reynolds number (Re=150) were numerically investigated.The effects of oscillation amplitude and frequency on hydrodynamic forces exerted on these cylinders were examined.Their lock-in regions were determined and under lock-in states varying characteristics of lift force and wake were analyzed.The numerical simulation showed that although wavy cylinders can fully suppress Karman vortex street in static cases,the variation trend of their hydrodynamic forces with their oscillation frequency is similar to that of right cylinders under forced oscillation; wavy cylinders’suppressing lift and drag forces appear within lower and higher frequency regions,respectively; lift force curves have different performances under a lock-in state and a non-lock-in state; under a lock-in state,vortex modes in wake regions of right cylinders are controlled by oscillation frequency,2S and C(2S) modes are observed,while only one vortex mode is observed in wake regions of wavy cylinders.

关键词

波型圆柱 / 受迫振动 / 锁定 / 低雷诺数

Key words

wavy cylinder / forced oscillation / lock-in / low Reynolds number

引用本文

导出引用
平焕1,张凯1,2,周岱1,3,4,包艳1,朱宏博1,韩兆龙1. 低雷诺数下直圆柱和波型圆柱受迫振动的数值研究[J]. 振动与冲击, 2018, 37(23): 1-8
PING Huan1,ZHANG Kai1,2,ZHOU Dai1,3,4,BAO Yan1,ZHU Hongbo1,HAN Zhaolong1. Numerical simulation for forced oscillations of right cylinders and  wavy cylinders under low Reynolds number[J]. Journal of Vibration and Shock, 2018, 37(23): 1-8

参考文献

[ 1 ] Bishop R E D,Hassan A Y. The lift and drag forces on a circular cylinder oscillating in a flowing fluid[C]// Proceedings of the Royal Society of London A: Mathematical,Physical and Engineering Sciences. The Royal Society,1964: 51-75.
[ 2 ] Meneghini J R,Bearman P W. Numerical simulation of high amplitude oscillatory flow about a circular cylinder[J]. Journal of Fluids and Structures,1995,9(4): 435-455.
[ 3 ] 梁亮文,万德成. 横向受迫振荡圆柱低雷诺数绕流问题数值模拟[J]. 海洋工程,2009,27(4): 46-60.
     LIANG Liang-wen,WAN De-cheng. Numerical investigation of a forced oscillating cylinder in a cross flows with low Reynolds number[J]. The Ocean Engineering,2009,27(4): 46 -60.
[ 4 ] 赵静,吕林,董国海,等. 亚临界雷诺数下圆柱受迫振动的数值研究[J]. 计算力学学报,2012,(01): 74-80.
     ZHAO Jing,LÜ Lin,DONG Guo-hai,et al. Two dimensional numerical simulation of forced oscillating cylinder at sub-critical Reynolds number[J]. Chinese Journal of Computational Mechanics,2009,26(5): 613-618.
[ 5 ] Ongoren A,Rockwell D. Flow structure from an oscillating cylinder Part 1. Mechanisms of phase shift and recovery in the near wake[J]. Journal of Fluid Mechanics,1988,191: 197-223.
[ 6 ] Gu W,Chyu C,Rockwell D. Timing of vortex formation from an oscillating cylinder[J]. Physics of Fluids,1994,6(11): 3677 -3682.
[ 7 ] Williamson C H K,Roshko A. Vortex formation in the wake of an oscillating cylinder[J]. Journal of Fluids and Structures,1988,2(4): 355-381.
[ 8 ] Karniadakis G E,Triantafyllou G S. Frequency selection and asymptotic states in laminar wakes[J]. Journal of Fluid Mechanics,1989,199: 441-469.
[ 9 ] Kumar S,Navrose,Mittal S. Lock-in in forced vibration of a circular cylinder[J]. Physics of Fluids,2016,28(11): 113605.
[10] Koopmann G H. The vortex wakes of vibrating cylinders at low Reynolds numbers[J]. Journal of Fluid Mechanics,1967, 28(03): 501-512.
[11] Ahmed A,Bays‐Muchmore B. Transverse flow over a wavy cylinder[J]. Physics of Fluids A: Fluid Dynamics,1992,4(9): 1959-1967.
[12] 邹琳,林玉峰. 亚临界雷诺数下波浪型圆柱绕流的数值模拟及减阻研究[J]. 水动力学研究与进展A辑,2010,25(1): 31-36.
ZOU Lin,LIN Yu-feng. Numerical simulation of turbulent flow around wavy cylinders at a subcritical Reynolds number and the investigation on drag reduction[J]. Chinese Journal of Hydrodynamics,2010,25(1): 31-36.
[13] Lam K,Lin Y F. Effects of wavelength and amplitude of a wavy cylinder in cross-flow at low Reynolds numbers[J]. Journal of Fluid Mechanics,2009,620: 195-220.
[14] Holzmann T. Mathematics,Numerics,Derivations and OpenFOAM[M]. 4th ed. Leoben: Holzmann CFD,2016.
[15] Issa R I. Solution of the implicitly discretised fluid flow equations by operator-splitting[J]. Journal of Computational Physics,1991,93(2): 388-410.
[16] Lam K,Lin Y. Large eddy simulation of flow around wavy cylinders at a subcritical Reynolds number[J]. International Journal of Heat and Fluid Flow,2008,29 (4): 1071–1088.
[17] Park J,Kwon K,Choi H. Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160[J]. Journal of Mechanical Science and Technology,1998,12(6): 1200-1205.
[18] Sharman B,Lien F S,Davidson L,et al. Numerical predictions of low Reynolds number flows over two tandem circular cylinders[J]. International Journal for Numerical Methods in Fluids,2005,47(5): 423-447.
[19] Williamson C H K. Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers[J]. Journal of Fluid Mechanics,1989,206: 579-627.
[20] Guilmineau E,Queutey P. A numerical simulation of vortex shedding from an oscillating circular cylinder[J]. Journal of Fluids and Structures,2002,16(6): 773-794.
[21] Anagnostopoulos P. Numerical study of the flow past a cylinder excited transversely to the incident stream. Part 1: Lock-in zone,hydrodynamic forces and wake geometry[J]. Journal of Fluids and Structures,2000,14(6): 819-851.
[22] Singh S P,Mittal S. Vortex-induced oscillations at low Reynolds numbers: hysteresis and vortex-shedding modes[J]. Journal of Fluids and Structures,2005,20(8): 1085-1104.

PDF(2149 KB)

Accesses

Citation

Detail

段落导航
相关文章

/