基于模糊分数阶PID的开关磁阻电机直接瞬时转矩控制

党选举,彭慧敏,姜辉,伍锡如

振动与冲击 ›› 2018, Vol. 37 ›› Issue (23) : 104-110.

PDF(1019 KB)
PDF(1019 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (23) : 104-110.
论文

基于模糊分数阶PID的开关磁阻电机直接瞬时转矩控制

  • 党选举,彭慧敏,姜辉,伍锡如
作者信息 +

Direct instantaneous torque control of a switched reluctance motor based on fuzzy fractional order PID

  • DANG Xuanju,PENG Huimin, JIANG Hui, WU Xiru
Author information +
文章历史 +

摘要

针对开关磁阻电机直接瞬时转矩控制系统,引入分数阶积分与分数阶微分和二维模糊控制器结合,设计模糊分数阶PID转速外环控制器,提出了基于模糊分数阶PID的开关磁阻电机直接瞬时转矩控制。引入的分数阶积分可以提高系统的稳态精度,削弱积分饱和引起的大超调;运用分数阶微分解决原一阶微分易受高频干扰的缺点,提高系统的动态性能。基于RBF神经网络设计了PID转矩内环控制器,适应开关磁阻电机的非线性,实现转矩的双闭环跟踪控制。通过仿真表明:该文设计的模糊分数阶PID转速外环控制器能有效减小开关磁阻电机转矩脉动,系统快速达到稳态,动态性能良好,适应性强。

Abstract

Aiming at the direct instantaneous torque control system of a switched reluctance motor,a fuzzy fractional order PID control strategy was proposed here.Fractional integral and fractional differential were introduced into the two-dimensional fuzzy controller to design a fuzzy fractional order PID rotating speed outer loop controller.The fractional integral was used to improve the steady-state precision of the system and weaken the large overshoot caused by the integral saturation.The fractional differential was employed to overcome the shortcoming of the first order differential being easy to be disturbed by high-frequency interferences and improve the dynamic performance of the system.The PID torque inner loop controller was designed based on the RBF neural network to adapt to the nonlinearity of the switched reluctance motor,and realize the torque’s dual-closed loop tracking control.The simulation results showed that the proposed fuzzy fractional order PID rotating speed outer loop controller can effectively reduce the torque ripple of the switched reluctance motor to make the system quickly reach steady state with good dynamic performance and strong adaptability.

关键词

分数阶积分与分数阶微分 / 开关磁阻电机 / 直接瞬时转矩控制 / 模糊分数阶PID / RBF神经网络

Key words

 fractional integral and fractional differential / switched reluctance motor / direct instantaneous torque control / fuzzy fractional order PID / RBF neural network

引用本文

导出引用
党选举,彭慧敏,姜辉,伍锡如. 基于模糊分数阶PID的开关磁阻电机直接瞬时转矩控制[J]. 振动与冲击, 2018, 37(23): 104-110
DANG Xuanju,PENG Huimin, JIANG Hui, WU Xiru. Direct instantaneous torque control of a switched reluctance motor based on fuzzy fractional order PID[J]. Journal of Vibration and Shock, 2018, 37(23): 104-110

参考文献

[1]. Sun J, Wang Y, Bai F, et al. Simulation of the direct instantaneous torque control of SRM using MATLAB[C]// International Conference on Automatic Control and Artificial Intelligence. IET, 2012:1850-1853.
[2]. Zabihi N, Gouws R. A Review on Switched Reluctance Machines for Electric Vehicles[C]// IEEE International Symposium on Industrial Electronics. IEEE, 2016:799-804.
[3]. Wang J J. A common sharing method for current and flux-linkage control of switched reluctance motor[J]. Electric Power Systems Research, 2016,131:19-30.
[4]. Kurian S, Nisha G K. Torque ripple minimization of SRM using torque sharing function and hysteresis current controller[C]// International Conference on Control  Communication & Computing India. 2015:149-154.
[5]. Zhang R, Zhang Y, Qian X, et al. Direct instantaneous torque control of switched reluctance motor based on adaptive backstepping[C]// International Conference on Electrical Machines and Systems. IEEE, 2015:567-572.
[6]. Hu Y, Ding W. Torque ripple minimization of a novel modular stator switched reluctance motor based on direct instantaneous torque control[C]// Eleventh International Conference on Ecological Vehicles and Renewable Energies. 2016:1-7.
[7]. Wang Y, Zhang W, Yao S, et al. Optimum design of switched reluctance motor based on direct instantaneous torque control[C]// International Conference on Electrical Machines and Systems. 2015:911-913.
[8]. Gan C, Wu J, Sun Q, et al. Low-cost direct instantaneous torque control for switched reluctance motors with bus current detection under soft-chopping mode[J]. Iet Power Electronics, 2016, 9(3):482-490.
[9]. 陆朱卫, 黄其新. 基于模糊神经网络PID的开关磁阻电机控制系统研究[J]. 机电工程, 2017, 34(1):58-61.
LU Zhu-wei, HUANG Qi-xin. Research on switched reluctance motor control system based on fuzzy neural network PID[J]. Journal of Mechanical & Electrical Engineering, 2017, 34(1):58-61.
[10]. 党选举, 袁小唐, 胡景佳. 基于柔性神经网络的SRM直接瞬时转矩控制[J]. 电气传动, 2014, 44(5):62-66.
DANG Xu-ju, YUAB Xiao-tang, JING Hui-jia. Direct Instantaneous Torque Control of SRM Based on Flexible Neural Network[J]. Electric Drive, 2014, 44(5):62-66.
[11]. 牛江川, 申永军, 杨绍普,等. 分数阶 PID 控制对单自由度线性振子的影响[J]. 振动与冲击, 2016, 35(24):88-95.
NIU Jiang-chuan, SHEN Yong-Jun,YANG Shao-pu, et al. Effect of a fractional-order PID controller on the dynamical response of a linear single degree-of-freedom oscillator[J]. Journal of Vibration and Shock, 2016, 35(24):88-95.
[12]. 曹军义, 曹秉刚. 分数阶控制器的数字实现及其特性[J]. 控制理论与应用, 2006, 23(5):791-794.
CAO Jun-yi, CAO Bing-gang. Digital realization and characteristics of fractional order contorllers[J]. Control Theory & Applications, 2006, 23(5):791-794.
[13]. Attaran S M, Yusof R, Selamat H. A novel optimization algorithm based on epsilon constraint-RBF neural network for tuning PID controller in decoupled HVAC system[J]. Applied Thermal Engineering, 2016, 99:613-624.
[14]. Dowlatshahi M, Saghaian Nejad S M, Moallem M, et al. Torque ripple reduction of switched reluctance motors considering copper loss minimization[C]// IEEE International Conference on Industrial Technology. IEEE, 2014:858-865.
[15]. 夏克文, 李昌彪, 沈钧毅. 前向神经网络隐含层节点数的一种优化算法[J]. 计算机科学, 2005, 32(10):143-145.
XIA Ke-wen, LI Chang-biao, SHEN Jun-yi. An Optimization Algorithm on the Number of Hidden Layer Nodes in Feed-forward Neural Network[J]. Computer Science, 2005 32(10):143-145.
[16]. 王瑞萍. 基于分数阶控制器的永磁同步电动机转速控制研究[D]. 华南理工大学, 2012.
WANG Rui-ping. Research on Fractional Order Controllers for Permanent Magnet Synchronous Motor Speed Control[D]. South China University of Technology, 2012.

PDF(1019 KB)

Accesses

Citation

Detail

段落导航
相关文章

/