针对行星齿轮箱在运行时产生的非线性非平稳振动,且故障特征信号微弱等问题,将量子理论引入到信息熵的计算中,提出一种全新的特征提取方法-非线性量子信息熵。根据量子理论的基本概念,建立了振动信号的多量子位系统;分析了将量子理论引入到信息熵中的可行性,进而提出了非线性量子信息熵基本原理,并对行星齿轮箱三种运行状态振动仿真信号的非线性量子信息熵进行了分析,说明了量子信息熵作为行星齿轮箱特征的可行性;最后以行星变速箱故障试验台采集到的五种状态信号为例,计算其非线性量子信息熵,并与时频熵和样本熵计算结果对比。结果表明,非线性线性量子信息熵能够有效的提取行星变速箱运行状态特征。
Abstract
Aiming at the nonlinear and non-stationary vibration of planetary gearbox and the weak fault characteristic signal,the quantum theory was introduced into the calculation of information entropy,and a new feature extraction method,nonlinear quantum information entropy,was proposed.According to the basic concept of quantum theory,the multi-qubit system of vibration signal was established,the feasibility of introducing quantum theory into information entropy was analyzed,and the basic principle of nonlinear quantum information entropy was proposed.The nonlinear quantum information entropy of vibration simulation signals in three states of planetary gearbox was analyzed,and the feasibility of using quantum information entropy as the characteristic of planetary gearbox was illustrated.Finally,the nonlinear quantum information entropy of the five kinds of state signals collected by the planetary gearbox fault test bed was calculated and compared with the results of time-frequency entropy and sample entropy.The results show that nonlinear quantum information entropy can effectively extract the operating state characteristics of planetary gearbox.
关键词
量子理论 /
非线性量子信息熵 /
仿真分析 /
行星变速箱 /
特征提取
{{custom_keyword}} /
Key words
quantum theory /
nonlinear quantum entropy /
simulation analysis /
planetary gearboxes /
feature extraction
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 雷亚国, 何正嘉, 林京, 等. 行星齿轮箱故障诊断技术的研究进展[J]. 机械工程学报, 2011, 47(19): 59-67.
LEI Yaguo, HE Zhengjia, LIN Jing, etc. Research advances of fault diagnosis technique for planetary gearboxes[J]. Journal of mechanical engineering, 2011, 47(19): 59-67.
[2] 饶国强, 冯辅周, 司爱威, 等.排列熵算法参数的优化确定方法[J].振动与冲击.2014,33(1):188-193.
RAO Guo-qiang, FENG Fu-zhou, SI Ai-wei. Method for optimal determination of parameters in permutation entropy algorithm[J]. Journal of vibration and shock, 2014,33(1):188-193.
[3] 于德介, 张嵬, 程军圣, 等. 基于EMD的时频熵在齿轮故障诊断中的应用[J]. 振动与冲击, 2015, 36(1):26-29.
YU De-jie, ZHANG Wei, CHENG Jun-sheng. Application of EMD and time-frequency entropy in gear fault diagnosis[J]. Journal of vibration and shock, 2015, 36(1):26-29.
[4] 陈彦龙, 基于量子理论的轴承振动信号降噪方法研究[D].军械工程学院,河北石家庄,2016:5-8.
CHEN Yanlong. Denoising method for bearing vibration signal based on quantum theory[D]. Ordnance Engineering College, Shijiazhuang,2016:5-8.
[5] 谢可夫,罗安. 量子启发数学形态学的研究[J]. 电子学报,2006,33(2):284-287.
XIE Kefu , LUO An. Research on quantum-inspired mathematical morphology[J]. Acta Electronica Sinica, 2006,33(2):284-287.
[6] Yanlong Chen, Peilin Zhang , Zhengjun Wang, etc. Denoising algorithm for mechanical vibration signal using quantum Hadamard transformation[J]. Measurement,2015, 66:168–175.
[7] 陈彦龙,张培林,李兵 等. 采用非线性量子比特的形态滤波及其应用[J]. 机械工程学报,2015,51(2):127-133.
CHEN Yanlong, ZHANG Peilin, LI Bing et al. Morphological Filtering Using Nonlinear Quantum Bit and Its Application[J].
[8] C.E. Shannon, A mathematical theory of communication, SIGMOBILE Mob. Comput. Commun. Rev. 5 (1) (2001) 3–55.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}