内输多相流与绕流耦合作用下立管非线性振动

马天麒1,顾继俊2,孙旭2,张赢今2,李明婕3

振动与冲击 ›› 2018, Vol. 37 ›› Issue (23) : 15-23.

PDF(1065 KB)
PDF(1065 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (23) : 15-23.
论文

内输多相流与绕流耦合作用下立管非线性振动

  • 马天麒1,顾继俊2,孙旭2,张赢今2,李明婕3
作者信息 +

Nonlinear vibration of a riser under inter-action between internal multi-phase flow and cross flow

  • MA Tianqi1, GU Jijun2, SUN Xu2,ZHANG Yingjin2,LI Mingjie3
Author information +
文章历史 +

摘要

对内输多相流立管在内流与外部绕流耦合作用下的振动响应进行了分析。建立了内部多相流-立管-外部绕流的耦合方程,并采用广义积分变换法(GITT)将偏微分方程转化为常微分方程进行求解。分析得到立管内两相流会引起立管自然频率的降低,管内流速越高,立管越长,两相流作用越明显。立管在内流和外部绕流共同作用下,管内含气量的增加,使立管发生涡激振动的频率降低,振动幅值增加。管内两相流的作用会引起立管在较小的外部流速下发生共振并且会诱发立管发生更高一阶模态的振动。外部绕流流速越高,管内两相流作用越小。

Abstract

The dynamic response of a riser conveying multi-phase flow under interaction between internal flow and external cross flow was analyzed.The internal multi-phase flow-riser-external cross flow coupled dynamic equations were established,and they were solved through transforming partial differential equations into ordinary ones with the generalized integral transform technique (GITT).The results showed that the internal two-phase flow causes the riser’s natural frequencies to drop; the higher the internal flow rate and the longer the length of the riser,the more significant the internal two-phase flow’s action; under the interaction of internal flow and external cross flow,increase in gas content inside the riser makes the frequency of the riser’s vortex induced vibration decrease and the vibration amplitudes increase; internal two-phase flow causes the riser’s resonance under a lower external flow rate and induces the riser’s higher order modal vibration; the higher the external cross flow rate,the smaller the action of internal two-phase flow.

关键词

内输多相流 / 涡激振动 / 非线性 / 广义积分变换法

Key words

pipe-conveying multi-phase flow / vortex induced vibration / nonlinear / the generalized integral transform technique

引用本文

导出引用
马天麒1,顾继俊2,孙旭2,张赢今2,李明婕3. 内输多相流与绕流耦合作用下立管非线性振动[J]. 振动与冲击, 2018, 37(23): 15-23
MA Tianqi1, GU Jijun2, SUN Xu2,ZHANG Yingjin2,LI Mingjie3. Nonlinear vibration of a riser under inter-action between internal multi-phase flow and cross flow[J]. Journal of Vibration and Shock, 2018, 37(23): 15-23

参考文献

[1] 黄维平, 刘娟, 唐世振. 考虑流固耦合的大柔性圆柱体涡激振动非线性时域模型[J]. 振动与冲击, 2012(09):140-143.
    HUANG Weiping, LIU Juan, TANG Shizhen. Nonlinear model of vortex induced vibration of flexible cylinder in consideration of fluid-structure interaction[J]. Journal of Vibration and Shock, 2012,31(9):140-143.
[2] 张永波, 郭海燕, 孟凡顺, 等. 基于小波变换的顶张力立管涡激振动规律实验研究[J]. 振动与冲击, 2011(02):149-154.
     ZHANG Yong-bo, GUO Hai-yan, MENG Fan-shun, et al. Model tests for vortex-induced vibration of a top tension riser based on wavelet transformation[J]. JOURNAL OF VIBRATION AND SHOCK, 2011,30(2):149-154, 185.
[3] Kaewunruen S, Chiravatchradej J, Chucheepsakul S. Nonlinear free vibrations of marine risers/pipes transporting fluid[J]. Ocean Engineering, 2005,32(3–4):417-440.
[4] 孟丹, 郭海燕, 徐思朋. 输流管道的流体诱发振动稳定性分析[J]. 振动与冲击, 2010(06):80-83.
     MENG Dan, GUO Hai-yan, XU Si-peng. Stability analysis on flow-induced vibation of fluid-conveying pipes[J]. JOURNAL OF VIBRATION AND SHOCK, 2010,29(6):80-83.
[5] Gu J, Ma T, Duan M. Effect of aspect ratio on the dynamic response of a fluid-conveying pipe using the Timoshenko beam model[J]. Ocean Engineering, 2016,114:185-191.
[6] Guo H Y, Lou M. Effect of internal flow on vortex-induced vibration of risers[J]. Journal of Fluids and Structures, 2008,24(4):496-504.
[7] Dai H L, Wang L, Qian Q, et al. Vortex-induced vibrations of pipes conveying fluid in the subcritical and supercritical regimes[J]. Journal of Fluids and Structures, 2013,39:322-334.
[8] Meng S, Zhang X, Che C, et al. Cross-flow vortex-induced vibration of a flexible riser transporting an internal flow from subcritical to supercritical[J]. Ocean Engineering, 2017,139:74-84.
[9] Dai H L, Wang L, Qian Q, et al. Vortex-induced vibrations of pipes conveying pulsating fluid[J]. Ocean Engineering, 2014,77:12-22.[10] Monette C, Pettigrew M J. Fluidelastic instability of flexible tubes subjected to two-phase internal flow[J]. Journal of Fluids and Structures, 2004,19(7):943-956.
[11] An C, Su J. Dynamic behavior of pipes conveying gas–liquid two-phase flow[J]. Nuclear Engineering and Design, 2015,292:204-212.
[12] Facchinetti M L, de Langre E, Biolley F. Coupling of structure and wake oscillators in vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004,19(2):123-140.
[13] Violette R, de Langre E, Szydlowski J. Computation of vortex-induced vibrations of long structures using a wake oscillator model: Comparison with DNS and experiments[J]. Computers & Structures, 2007,85(11–14):1134-1141.
[14] Xu W, Zeng X, Wu Y. High aspect ratio (L/D) riser VIV prediction using wake oscillator model[J]. Ocean Engineering, 2008,35(17–18):1769-1774.
[15] Guo H, Li X, Liu X. Numerical Prediction of Vortex Induced Vibrations on Top Tensioned Riser in Consideration of Internal Flow[J]. 中国海洋工程(英文版); CHINA OCEAN ENGINEERING, 2008,22(4):675-682.
[16] Lou M, Ding J, Guo H, et al. Effect of internal flow on vortex-induced vibration of submarine free spanning pipelines[J]. 中国海洋工程(英文版); CHINA OCEAN ENGINEERING, 2005,19(1):147-154.
[17] Leal M A, Machado H A, Cotta R M. Integral transform solutions of transient natural convection in enclosures with variable fluid properties[J]. International Journal of Heat and Mass Transfer, 2000,43(21):3977-3990.
[18] de Lima G G C, Santos C A C, Haag A, et al. Integral transform solution of internal flow problems based on navier-stokes equations and primitive variables formulation[J]. International Journal for Numerical Methods in Engineering, 2007,69(3):544-561.
[19] Chen S S, Rosenberg G S. Vibration and stability of a tube conveying fluid[R]. Argonne, lllinois, U.S.A.: Argonne National Laborary Report ANL-7762, 1971.

PDF(1065 KB)

Accesses

Citation

Detail

段落导航
相关文章

/