场地液化是典型的地震灾害,其中最严重的为液化侧移,其区划工作是避免和减轻其灾害的重要手段,而我国这方面技术基本为空白。美国国国家地震减灾计划(NEHRP)液化侧移区划技术代表目前国际先进水平,但它是一种基于单点侧移计算公式和2D GIS的方法,其可靠性和精度严重依赖高密度钻孔。本文基于地震区划的本质需求,摒弃NEHRP的点-面区划方式,研究一种面-面区划技术,提出基于3D GIS技术的液化侧移区划新方法。通过解决液化侧移层厚度和细粒土含量等面要素提取关键技术,获取可液化土层特征分布,结合先前提出的液化侧移等级判别标准,可给出适合小区域和中等区域液化侧移区划图。应用新方法,得到了7.8级地震下唐山南区液化侧移等级分布图,与1976年唐山地震震后航测结果相符,表明了新方法合理可行。本文方法克服了NEHRP方法依赖高密度钻孔的弊端,在保证液化侧移区划精度同时大大降低了成本,达到了科学合理且经济的目标。
Abstract
Site liquefaction is a typical earthquake disaster,the most serious of which is liquefaction lateral displacement,and its zoning work is an important means to avoid and mitigate the disaster.The liquefaction lateral displacement zoning technology of NEHRP(National Earthquake Hazards Reduction Plan of US)represents the international advanced level at present,but it is a method based on single point lateral displacement formula and 2D GIS.Its reliability and accuracy depend heavily on high-density boreholes.Based on the essential requirement of seismic zoning and abandoning the point-surface zoning of NEHRP,a new method of liquefaction sideways zoning based on 3D GIS was proposed in this paper.By solving the key techniques of extracting surface elements such as the thickness of liquefaction lateral displacement layer and the content of fine-grained soil,the characteristic distribution of liquefiable soil layer was obtained,and combined with the criteria of liquefaction lateral displacement grade proposed previously,The zoning map of liquefaction lateral displacement suitable for small area and medium area could be given.By using the new method,the scale distribution of liquefaction lateral displacement in the south area of Tangshan under the M7.8 earthquake was obtained,which was in agreement with the aerial survey results after the 1976 Tangshan earthquake.It was shown that the new method is reasonable and feasible.This method overcomes the drawback of NEHRP method depending on high density borehole,ensures the accuracy of liquefaction lateral displacement zoning and greatly reduces the cost.
关键词
液化侧移 /
区划 /
影响因素提取技术 /
3-D GIS /
MVS
{{custom_keyword}} /
Key words
liquefaction-induced lateral spread /
zonation /
extraction of polygon feature for affecting factors /
3-D GIS /
MVS
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 方鸿琪, 王锤琦. 唐山强震区地震工程地质研究[M]. 北京: 中国建筑科学研究院, 1980. (Fang Hongqi, Zhang Chuiqi. Approach to Tangshan Earthquake Engineering Geological Problems[M]. Beijing: China Academy of Building Reseach. 1980. ( in Chinese))
[2] Youd T L, Mapping of earthquake-induced liquefaction for seismic zonation[C]// Proc. 4th International Conference on Seismic Zonation, 1991: 111-147.
[3] Youd T L and Perkins D M. Mapping of liquefaction induced ground failure potential[J]. Journal of the Geotechnical Engineering Division, 1978, 104(GT4): 433-446.
[4] Miller R D. Surficial Geologic Map along Part of the Wasatch Front, Salt Lake Valley, Utah, U.S. Geological Survey Miscellaneous Field Studies Map MF-1198, scale 1:100000, 1980.
[5] Youd T.L. and Perkins J B. Map showing liquefaction susceptibility of San Mateo County, Calif, U.S. Geological Survey Misc. Investigations Series Map I-1257-G, 1987.
[6] Anderson L R, Keaton J R, Spitzley J E, and Allen A C. 1986. Liquefaction Potential Map for Salt Lake County, Utah: Utah State University Department of Civil and Environmental Engineering and Dames and Moore, unpublished final technical report prepared for the U.S. Geological Survey, National Earthquake Hazards Reduction Program Award No.14-08-0001-19910, 1994.
[7] Youd T L and Perkins D M. Mapping of liquefaction severity index[J]. Journal of Geotechnical Engineering, 1987, 113(11): 1374-1392.
[8] Bartlett S F, Olsen M J, and Solomon B J, Lateral Spread Hazard Mapping of Northern Salt Lake County for a Magnitude 7.0 Scenario Earthquake[R]. Technical report submitted to the United States Geological Survey, NEHRP Award No. 04HQGR0026, 2005.
[9] Olsen M J, Bartlett S F, et al. Lateral Spread Hazard Mapping of the Northern Salt Lake Valley, Utah, for a M7.0 Scenario Earthquake[J]. Earthquake Spectra, 2007, 23(1): 95-113.
[10] 李程程, 曹振中,李瑞山. 场地液化侧移等级判别标准及其可靠性分析[J]. 岩土工程学报, 2016, 38(09): 1668-1677. (LI Cheng-cheng, CAO Zhen-zhong, LI Rui-shan. Assessment criterion for level of liquefaction-induced lateral spread and its reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(09): 1668-1677. ( in Chinese))
[11] 陈龙伟, 袁晓铭, 孙 锐. 2011年新西兰Mw6.3地震液化及岩土震害述评[J]. 世界地震工程, 2013, 29(3): 1-9. (Chen Longwei,Yuan Xiaoming, Sun Rui. Review of liquefaction phenomena and geotechnical damage in the 2011 New Zealand Mw6.3 earthquake[J]. World Earthquake Engineering, 2013, 29(3): 1-9. ( in Chinese))
[12] Xu Bin. An empirical study of Classification and Regression Tree and Random Forests[D]. Stony Brook University, New York, 2006.
[13] 陈 鲲. 针对大地震设防的地震动参数确定方法研究[D].中国地震局地球物理研究所, 2013. (Research on the Method of Determination Ground Motion Parameters against Great Earthquake[D]. Beijing: China. Institute of Geophysics, China Earthquake Administration, 2013. (in Chinese))
[14] 安立伟. 济南泉域三维地质模型的构建及可视化[D]. 北京:中国地质大学, 2007. (An L W. Instauration and Visualization of Three-dimensional Geological Model in Ji’nan Karstic Spring Water Area[D], Beijing: China University of Geosciences, 2007. (in Chinese))
[15] 胡聿贤,汪素云, 刘汉兴等. 参考唐山地震确定的华北地区地震动衰减关系[J]. 土木工程学报, 1986, 19(3): 1-10. (Hu Yuxian, Wang Suyun, Liu Hanxing, et al. Strong Ground Motion Attenuation Relationships for North China Determined by Tangshan Earthquake[J]. China Civil Engineering Journal, 1986, 19(3): 1-10. (in Chinese))
[16] 国家地震局、陕西省测绘局:1976年7月28日唐山地震震害地图,1978. (The State Seismological Bureau, the provincial bureau of surveying and mapping: The seismic damage map during the Tangshan earthquake on July, 28th, 1976. 1978. (in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}