针对变分模态分解(Variational Mode Decomposition, VMD)的参数需事先人为确定的问题以及如何选取包含故障特征信息的本征模态分量(Intrinsic Mode Function, IMF)的问题,提出了基于信息熵的参数确定方法和基于信息熵的IMF选取方法。该方法首先对原始故障信号进行变分模态分解,通过信息熵最小值原则对其参数进行优化,获得既定的若干IMF分量;在优化参数时获得信息熵最小值所在的IMF,选取其为有效IMF分量进行包络解调分析,提取轴承故障特征频率。通过轴承仿真信号和实际数据分析,表明该方法能够提取滚动轴承早期故障信号的微弱特征,能够实现故障的准确判别。
Abstract
Aiming at problems of the variational mode decomposition (VMD)’s parameters needing to be determined in advance and how to choose intrinsic mode functions (IMFs) containing fault feature information,a method to determine VMD parameters and the other one to choose IMFs both based on information entropy were proposed.With these methods,the original fault signal was decomposed using VMD,and the VMD parameters were optimized with the minimum information entropy principle to obtain several IMFs.The IMF corresponding to the minimum information entropy was chosen as the effective IMF to do the envelope demodulation analysis,and extract a bearing fault feature frequency.Through analyzing bearing simulated signals and actual signals,it was shown that the proposed methods can be used to effectively extract weak features of the early fault signal of a rolling bearing,and realize accurate fault diagnosis.
关键词
变分模态分解 /
信息熵 /
参数优化 /
滚动轴承 /
包络解调 /
故障诊断
{{custom_keyword}} /
Key words
variational mode decomposition /
information entropy /
rolling bearing /
envelope demodulation /
fault diagnosis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈雪峰, 李继猛, 程航, 等. 风力发电机状态监测和故障诊断技术的研究与发展[J]. 机械工程学报, 2011,47(9): 45-52.
CHEN Xuefeng, LI Jimeng, CHENG Hang, et al. Research and application of condition monitoring and fault diagnosis technology in wind turbines [J]. Power System Technology, 2011,47(9): 45-52.
[2] Jardine A k S, Lin D, Banjevic D.A review on machinery diagnostics and prognostics implementing condition-based maintenance[J].Mechanical System and Signal Processing, 2006,20(7):1483-1510.
[3] 丁康, 黄志东, 林慧斌. 一种谱峭度和Morlet小波的滚动轴承微弱故障诊断方法[J]. 振动工程学报, 2014, 27(1):128-135.
DING Kang, HUANG Zhidong, LIN Huibin. A weak fault diagnosis method for rolling element bearings based on morlet wavelet and spectral kurtosis [J]. Journal of Vibration Engineering, 2014, 27(1):128-135.
[4] 冷永刚, 郑安总, 范胜波. SVD分量包络监测方法及其在滚动轴承早期故障诊断中的研究[J]. 振动工程学报, 2014, 27 (5): 794-800.
LENG Yonggang, ZHENG Anzong, FAN Shengbo. SVD component-envelope detection method and its application in the incipient fault diagnosis of rolling bearing [J]. Journal of Vibration Engineering, 2014, 27 (5): 794-800.
[5] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis[A]. Proceedings of the Royal Society Lond [C]. 1998, 454, 903- 995.
[6] Wu Zhaohua, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[7] Rilling G, Flandrin P. on the Influence of Sampling on the Empirical Mode Decomposition[C]// IEEE International Conference on Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. IEEE, 2006:III-III.
[8] Dragomiretskiy K, Zosso D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
[9] Mohanty, Gupta K K, Raju K S. Bearing fault analysis using variational mode decomposition[C]// International Conference on Industrial and Information Systems. IEEE, 2014:1-6.
[10] 刘长良, 武英杰, 甄成刚. 基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J]. 中国电机工程学报, 2015, 35(13):3358-3365.
LIU Changliang, WU Yingjie, ZHENG Chenggang. Rolling Bearing Fault Diagnosis Based on Variational Mode Decomposition and Fuzzy C Means Clustering [J]. Proceeding of the CSEE, 2015, 35 (13): 3358-3365.
[11] 赵洪山, 郭双伟, 高夺. 基于奇异值分解和变分模态分解的轴承故障特征提取[J]. 振动与冲击, 2016, 35 (22): 183-188.
ZHAO Hongshan, GUO Shuangwei, GAO Duo. Fault feature extraction of bearing faults based on singular value decomposition and variational modal decomposition [J]. Journal of Vibration and Shock, 2016, 35 (22): 183-188.
[12] 唐贵基, 王晓龙. 变分模态分解方法及其在滚动轴承早期故障诊断中的应用[J]. 振动工程学报, 2016, 29(4):638-648.
TANG Guiji, WANG Xiaolong. Variational mode decomposition method and its application on incipient fault diagnosis of rolling bearing [J]. Journal of Vibration Engineering, 2016, 29 (4): 638-648.
[13] McFadden P D,Smith J D,Model for the vibration produced by a single point defect in a rolling element bearing [J]. Journal of Sound and Vibration, 1984, 96(1):69-82.
[14] 李真. 熵选择IMF分量的滚动轴承故障诊断方法[D]. 北京:北京交通大学,2014.
[15] Liu T, Chen J, Dong G, et al. The fault detection and diagnosis in rolling element bearings using frequency band entropy[J]. Proceedings of Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 2013, 227(1):87-99.
[16] http://www.cwru.edu/laboratory/bearing/welcome_over view. htm.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}