大跨度三塔悬索桥弹塑性软钢阻尼器减震控制

张玉平,王浩,邹仲钦,陶天友,郑文智

振动与冲击 ›› 2018, Vol. 37 ›› Issue (23) : 226-233.

PDF(1630 KB)
PDF(1630 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (23) : 226-233.
论文

大跨度三塔悬索桥弹塑性软钢阻尼器减震控制

  • 张玉平,王浩,邹仲钦,陶天友,郑文智
作者信息 +

Aseismic control of a long-span triple-tower suspension bridge with elastic-plastic steel dampers

  • ZHANG Yuping, WANG Hao, ZOU Zhongqin, TAO Tianyou, ZHENG Wenzhi
Author information +
文章历史 +

摘要

大跨度三塔悬索桥是一种具有超大跨越能力的新型多塔悬索桥结构,其抗震特性备受关注。软钢阻尼器已被广泛应用于建筑结构的抗震加固中,但在桥梁工程中应用并不多见,为此,本文以泰州大桥为例,开展了软钢阻尼器应用于大跨度三塔悬索桥的减震控制研究。首先对软钢阻尼器参数进行敏感性分析,获得最优控制参数,据此分别研究一致激励和行波激励下软钢阻尼器的减震效果,并重点分析视波速对减震效果的影响。结果表明:设置软钢阻尼器可有效减小塔梁相对位移,但会使中塔底剪力和部分视波速下边塔底内力有所增大;在一定范围内的低视波速下近震源端结构内力减震效果优于远震源端,但在高视波速下远震源端减震效果明显大于近震源端。

Abstract

A long-span triple-tower suspension bridge is a brand-new type of multi-tower suspension bridge structure with super span ability,and its aseismic behavior attracts extensive attention.Elastic-plastic steel damper (EPSD) is widely used in seismic reinforcement of building structures,but its application in bridge engineering is rare.Here,taking Taizhou Bridge in China as an example,EPSD applied in aseismic control of a long-span triple-tower suspension bridge was studied.Firstly,the sensitivity analysis was performed for EPSD’s parameters to acquire the optimal control parameters.Then,vibration control effects were studied based on two different seismic input modes including uniform excitation and traveling wave excitation,and influences of seismic apparent wave velocities on the aseismic effect were emphatically analyzed.The results showed that relative displacements between towers and the main girder can be effectively reduced with the application of EPSD,but shear force at the bottom of mid-tower and internal forces at the bottom of edge towers under several apparent velocities increase; the internal force aseismic effects on the structure end close to the earthquake source are better than those far from the earthquake source under a certain range of low apparent wave velocities,while the aseismic control effects on the structure end far from the earthquake source are significantly better than those close to the earthquake source under high apparent velocities.

关键词

大跨度三塔悬索桥 / 弹塑性软钢阻尼器 / 行波效应 / 减震控制 / 参数敏感性

Key words

 long-span triple-tower suspension bridge / elastic-plastic steel damper / seismic response control / parametric sensitivity analysis / travelling-wave effect

引用本文

导出引用
张玉平,王浩,邹仲钦,陶天友,郑文智. 大跨度三塔悬索桥弹塑性软钢阻尼器减震控制[J]. 振动与冲击, 2018, 37(23): 226-233
ZHANG Yuping, WANG Hao, ZOU Zhongqin, TAO Tianyou, ZHENG Wenzhi. Aseismic control of a long-span triple-tower suspension bridge with elastic-plastic steel dampers[J]. Journal of Vibration and Shock, 2018, 37(23): 226-233

参考文献

[1] 范立础. 桥梁抗震[M]. 上海: 同济大学出版社, 1997.
FAN Li-chu. Seismic design of bridges [M]. Shanghai. Tongji University Press, 1997.
[2] 王浩, 李爱群, 郭彤. 超大跨悬索桥地震响应的综合最优控制研究[J]. 湖南大学学报(自然科学版), 2006, 33(3): 6-10.
WANG Hao, Li Ai-qun, Guo Tong. Compositive optimal control of the seismic response for super-long-span suspension bridges [J]. Journal of Human University (Natural Science), 2006, 33(3): 6-10.
[3] 胡世德, 范立絀. 江阴长江公路大桥纵向地震反应分析[J]. 同济大学学报, 1994, 22(4): 434-439.
HU Shi-de, Fan Li-chu. The longitudinal earthquake response analysis for the Jiangyin Yangtze River Bridge [J]. Journal of Tong Ji University, 1994, 22(4): 434-439.
[4] 焦常科, 李爱群, 操礼林, 等. 三塔悬索桥行波效应研究[J]. 土木工程学报, 2010, 43(12): 100-106.
JIAO Chang-ke, Li Ai-qun, Cao Li-lin, et, al. Traveling wave influence analysis for triple-tower suspension [J]. China Civil Engineering Journal, 2010, 43(12): 100-106.
[5] 闫聚考, 李建中, 彭天波, 等. 三塔两跨悬索桥行波效应振动台试验及数值研究[J]. 振动与冲击, 2016, 35(7): 44-48.
YAN Ju-kao, Li Jian-zhong, Peng Tian-bo, et, al. Shake table tests and numerical analysis for traveling wave effect of a three-tower two-span suspension bridge [J]. Journal of Vibration and Shock, 2016, 35(7): 44-48.
[6] 梁鹏, 吴向男, 李万恒, 等. 三塔悬索桥纵向约束体系优化[J]. 中国公路学报, 2011, 24(1): 59-67.
LIANG Peng, Wu Xiang-nan, Li Wan-heng, et, al. Longitudinal constraint system optimization for three-tower suspension bridge [J]. China Journal of Highway and Transport, 2011, 24(1): 59-67.
[7] 王浩, 陶天友, 张玉平, 等. 行波输入下大跨度三塔悬索桥减震控制[J]. 东南大学学报(自然科学版),2017, 7(2): 343-349.
WANG Hao, Tao Tian-you, Zhang Yu-ping, et, al. Seismic control of long-span triple-tower suspension bridge under travelling wave action [J]. Journal OF Southeast University ( Natural Science Edition), 2017, 7(2): 343-349.
[8] 焦常科, 李爱群, 王浩. 三塔悬索桥地震响应控制[J].振动、测试与诊断, 2011, 31(2): 156-161.   
JIAO Chang-ke, Li Ai-qun, Wang Hao. Seismic Response Control for Triple-Tower Suspension Bridges [J]. Journal of Vibration, Measurement& Diagnosis, 2011, 31(2): 156-163.
[9] 李钢, 李宏男. 新型软钢阻尼器的减震性能研究[J]. 振动与冲击, 2006, 25(3): 66-72.
LI Gang, Li Hong-nan. Study on vibration reduction of structure with a new type of mild metallic dampers [J]. Journal of Vibration and Shock, 2006, 25(3): 66-72.
[10] 欧进萍, 吴斌. 摩擦型与软钢屈服型耗能器的性能与减振效果的试验比较[J]. 地震工程与工程振动, 1995, 15(3): 73-87.
OU Jin-ping, Wu Bin. Experimental comparison of the properties of friction and mild steel yielding energy dissipators and their effects on reducing vibration of structure under earthquakes [J]. Earthquake Engineering and Engineering Vibration, 1995, 15(3): 73-87.
[11] Zhang C F, Zhang Z S, Shi J F. Development of high deformation capacity low yield strength steel shear panel damper [J]. Journal of Constructional Steel Research, 2012, 75: 116-130.
[12] 吴从晓, 周云, 王廷彦. 金属耗能器的类型、性能及工程应用[J]. 工程抗震与加固改造, 2006, 28(1): 87-94.
WU Cong-xiao, Zhou Yu, Wang Ting-yan. Types and performance of metallic dampers and their engineering applications [J]. Earthquake Resistant Engineering and Retrofitting, 2006, 28(1): 87-94.
[13] Li H N, Yin Y W, Wang S Y. Studies on seismic reduction of story-increased buildings with friction layer and energy-dissipated devices [J]. Earthquake Engineering & Structural Dynamics, 2004, 10(7): 1041-1056.
[14] 管仲国, 李建中, 朱宇. 弹塑性阻尼支座用于自锚式悬索桥减震设计[J]. 同济大学学报(自然科学版), 2009, 37(1): 6-12.
GUAN Zhong-guo, Li Jian-zhong, Zhu Yu. Elastic-plastic energy dissipating bearing for seismic design of self-anchored suspension bridge with single tower [J]. Journal of Tongji University (Natural Science), 2009, 37(1): 6-12.
[15] Wang H, Zhou R, Zong Z H, et al. Study on seismic response control of a single-tower self-anchored suspension bridge with elastic-plastic steel damper [J]. Science China Technological Sciences, 2012, 55(6): 1496-1502.
[16] 王浩, 周锐, 程怀宇, 等. 弹塑性钢阻尼器用于大跨度CFST拱桥的减震控制研究[J]. 振动与冲击, 2013, 32(12): 116-121.
WANG Hao, Zhou Rui, Cheng Huai-yu, et, al. Seismic response control of a long-span CFST arch bridge with EPSDs [J]. Journal of Vibration and Shock, 2013, 32(12): 116-121.
[17] Vader T S, McDaniel C C. Influence of dampers on seismic response of cable-supported bridge towers [J]. ASCE Journal of Bridge Engineering, 2007, 12(3): 373-379.
[18] 王浩. ANSYS大跨度桥梁高等有限元分析与工程实例[M]. 北京: 中国建筑工业出版社, 2014.

PDF(1630 KB)

Accesses

Citation

Detail

段落导航
相关文章

/