基于TR-PIV方法的格栅-空腔流动流场自激振荡空间特征研究

张永昌 1,徐宇工 2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (23) : 234-240.

PDF(3699 KB)
PDF(3699 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (23) : 234-240.
论文

基于TR-PIV方法的格栅-空腔流动流场自激振荡空间特征研究

  • 张永昌 1 , 徐宇工 2
作者信息 +

Spatial distribution characteristics of self-excited oscillations in a grille-cavity flow  field based on TR-PIV method

  • ZHANG Yongchang1,  XU Yugong2
Author information +
文章历史 +

摘要

格栅-空腔流动能够引起流场自激振荡现象,导致诸多工程问题。采用风洞实验方法对流场振荡的空间分布特征问题进行了研究。建立了格栅-空腔实验装置,使用时间分辨粒子图像测速系统(TR-PIV)对空腔不同展向截面的速度场进行了测量,分析了流场特定位置速度振荡的时频特征。研究结论表明:在格栅-空腔流动中,流场自激振荡频率在空间中均匀分布,其斯特罗哈数为0.37左右。在格栅外侧,振荡幅值沿来流方向呈增加-减小-增加变化。在格栅内侧,振荡幅值沿来流方向先增加后减小。振荡幅值沿展向呈对称分布,在展向平分面达到最大值,在空腔壁面处达到最小值。

Abstract

Grille-cavity flow can cause flow field self-excited oscillations to lead to various engineering problems.Here,wind tunnel tests were used to investigate spatial distribution characteristics of flow field oscillations.A grille-cavity test device was built.Using the time-resolved particle image velocity (TR-PIV) measurement system,velocity fields of the cavity’s sections in different spread directions were measured.The time-frequency characteristics of velocity oscillations at the specific positions of flow flied were analyzed.The results showed that in grille-cavity flow,the flow field self-excited oscillation frequencies are uniformly distributed in space and their Strouhal number is about 0.37; on the outside of the grille,the oscillation amplitudes have a variation of increase-decrease-increase in flow direction; on the inside of the grille,the oscillation amplitudes increase firstly and then decrease; the oscillation amplitudes are symmetrically distributed along the spread direction to reach the maximum on the spread bisector plane,and the minimum on the cavity’s wall surface.

关键词

格栅-空腔流动 / 自激振荡 / 时间分辨粒子图像测速 / 空间分布

Key words

grille-cavity flow / self-excited oscillation / TR-PIV / spatial distribution

引用本文

导出引用
张永昌 1,徐宇工 2. 基于TR-PIV方法的格栅-空腔流动流场自激振荡空间特征研究[J]. 振动与冲击, 2018, 37(23): 234-240
ZHANG Yongchang1, XU Yugong2. Spatial distribution characteristics of self-excited oscillations in a grille-cavity flow  field based on TR-PIV method[J]. Journal of Vibration and Shock, 2018, 37(23): 234-240

参考文献

[1] Rockwell D, Naudascher E. Review - Self-sustaining Oscillations of Flow Past Cavities [J]. Journal of Fluids Engineering, 1978, 100(2): 152-165.
[2] 刘俊, 杨党国, 王显圣, 等. 基于URANS与DDES方法的空腔近场噪声数值研究[J]. 振动与冲击, 2016, 35(20): 154-159.
Liu Jun, Yang Dang-guo, Wang xian-sheng, et al. Numerical simulation of near-field cavity noise by URANS and DDES [J]. Journal of vibration and shock, 2016, 35(20):154-159.
[3] 陶洋, 吴继飞, 徐来武, 等. 基于前缘边界层扰动的空腔压力脉动抑制研究[J]. 实验流体力学, 2016, 30(3): 66-70.
Tao Yang, Wu Ji-fei, Xu Lai-wu, et al. Control of cavity flow pressure oscillation through leading edge boundary layer perturbation [J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 66-70.
[4] 宋文成, 李玉军, 冯强. 武器舱气动噪声主动流动控制技术风洞试验研究[J]. 空气动力学学报,2016, 34(1): 33-39.
Song Wen-cheng, Li Yu-jun, Feng Qiang. Wind tunnel test research on weapon bay cavity active flow control for acoustic [J]. Acta Aerodynamica Sinica, 2016, 34(1): 33-39.
[5] Sever A C, Rockwell D. Oscillations of shear flow along a slotted plate: small- and large-scale structures [J]. Journal of Fluid Mechanics, 2005, 530: 213–222.
[6] Celik E, Rockwell D. Coupled oscillations of flow along a perforated plate [J]. Physics of Fluids, 2004, 16: 1714.
[7] Rockwell D, Naudascher E. Self-sustained oscillations of impinging free shear layers [J]. Annual Review of Fluid Mechanics, 1979, 11: 67-94.
[8] Howe M S. The influence of mean shear on unsteady aperture flow, with application to acoustical diffraction and self-sustained cavity oscillations [J]. Journal of Fluid Mechanics, 1981, 109: 125-146.
[9]Rowley C W, Colonius T, Basu A J. On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities [J]. Journal of Fluid Mechanics, 2002, 455(3): 315-346.
[10] Yamouni S, Sipp D, Jacquin L. Interaction between feedback aeroacoustic and acousticresonance mechanisms in a cavity flow: a global stability analysis [J]. Journal of Fluid Mechanics, 2013, 717: 134–165.
[11] Meseguer-Garrido F, Vicente J D, Valero E, et al. On linear instability mechanisms in incompressible open cavity flow [J]. Journal of Fluid Mechanics, 2014, 752: 219-236.
[12] Grace S M, Dewar W G, Wroblewski D E. Experimental investigation of the flow characteristics within a shallow wall cavity for both laminar and turbulent upstream boundary layers [J]. Experiments in Fluids, 2004, 36: 791–804.
[13] 杨党国, 李建强, 范召林, 等. 高亚声速空腔绕流气动噪声特性研究[J]. 空气动力学学报, 2010, 28(6): 703-707.
Yang Dang-guo, Li Jian-qiang, Fan Zhao-lin, et al. Investigation on aerodynamic noise characteristics of cavity flow at high subsonic speeds[J]. Acta Aerodynamica Sinica, 2010, 28(6): 703-707.
[14] 赵小见, 赵磊, 冯峰, 等. 某空腔低速流动噪声风洞试验[J]. 航空学报, 2015, 36(7): 2145-2154.
Zhao Xiao-jian, Zhao Lei, Feng Feng, et al. Wind tunnel test into noise induced by low-speed cavity flow [J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2145-2154.
[15] Kuo C H, Huang S H. Influence of flow path modification on oscillation of cavity shear layer [J]. Experiments in Fluids, 2001, 31: 162–178.
[16] Bres G A, Colonius T. Three-dimensional instabilities in compressible flow over open cavities [J]. Journal of Fluid Mechanics, 2008, 599: 309-339.
[17] Basley J, Pastur L R, Delprat N, et al. Space-time aspects of a three-dimensional multi-modulated open cavity flow [J]. Physics of Fluids, 2013, 25: 064105.
[18] Ghaddar N K, Korczak K Z, Mikic B B, et al. Numerical investigation of incompressible flow in grooved channels part instability and self-sustained oscillations [J]. Journal of Fluid Mechanics, 1986, 163: 413-432.
[19] Basley J, Pastur L R, Lusseyran F, et al. Experimental investigation of global structures in an incompressible cavity flow using time-resolved PIV [J]. Experiments in Fluids, 2011, 50(4): 905-918.
[20] Larchevêque L, Sagaut P, Labbe O. Large-eddy simulation of a subsonic cavity flow including asymmetric three-dimensional effects [J]. Journal of Fluid Mechanics, 2007, 577: 105-126.
[21] Celik E, Rockwell D. Shear layer oscillation along a perforated surface: A self-excited large-scale instability [J]. Experiments in Fluids, 2002, 14(12): 4444-4447
[22] Ozalp C, Pinarbasi A, Rockwell D. Self-excited oscillations of turbulent inflow along a perforated plate [J]. Journal of Fluids and Structures, 2003, 17: 955-970.
[23] Ekmekci A, Rockwell D. Self-sustained oscillations of shear flow past a slotted plate coupled with cavity resonance [J]. Journal of Fluids and Structures, 2003, 17: 1237-1245.
[24] Celik E, Sever A C, Rockwell D. Self-Sustained Oscillations past Perforated and Slotted Plates: Effect of Plate Thickness [J]. AIAA Journal, 2005, 43(8): 1850-1853.
[25] Celik E, Sever A C, Kiwata T, et al. Oscillations of flow past perforated and slotted plates: attenuation via a leading-edge ramp [J]. Experiments in Fluids, 2007, 42: 639-651.

PDF(3699 KB)

Accesses

Citation

Detail

段落导航
相关文章

/