小间距比下串列双圆柱涡激振动数值模拟研究:振动响应和流体力

陈威霖,及春宁,许栋

振动与冲击 ›› 2018, Vol. 37 ›› Issue (23) : 261-269.

PDF(2682 KB)
PDF(2682 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (23) : 261-269.
论文

小间距比下串列双圆柱涡激振动数值模拟研究:振动响应和流体力

  • 陈威霖,及春宁,许栋
作者信息 +

Numerical simulations for VIVs of two tandem cylinders with small spacing ratios: vibration responses and hydrodynamic forces

  • CHEN Weilin,  JI Chunning, XU Dong
Author information +
文章历史 +

摘要

对小间距比( )下串列双圆柱涡激振动进行了数值模拟研究,其中雷诺数为 ,折合流速为 ,质量比为 。为保证圆柱之间的距离不变,两圆柱均仅作横向振动。根据圆柱响应的不同将间距比范围内的涡激振动分为三种:当间距比 时,响应存在于较大的折合流速( )范围内;当间距比 时,在大折合流速时,类似于高雷诺数时的尾流弛振出现;当间距比 时,响应随折合流速增加并达到最大值,之后随折合流速缓慢减小,并最终稳定在较大的幅值上。对应不同的响应类型,上游和下游圆柱的流体力也呈现不同的变化。由于受到上游圆柱的屏蔽,下游圆柱的阻力均值要明显小于上游圆柱;在出现尾流弛振的区域,两圆柱的升力均方根随折合流速增加。此外,某些折合流速下圆柱之间的非稳定耦合作用也被反映出来。

Abstract

Numerical simulations for vortex-induced vibrations (VIVs) of two tandem cylinders with small spacing ratios of L*=1.1—1.5 were performed,where Reynolds number Re=100,the reduced flow velocity Ur=3—30 and the mass ratio m*=2.0.Two cylinders only have transverse vibrations to keep the distance between them unchanged.The simulated results showed that there are three types of vibration responses; when L*≤1.1,the responses exist in reduced flow velocity’s a larger range of Ur=4—28; when L*=1.2—1.3,wake relaxation vibration similar to VIV at high Re number appears under large reduced flow velocity; when L*≥1.5,the vibration responses increase and reach the maximum with increase in reduced flow velocity,and then they decrease slowly and finally have a steady large value; the upstream and downstream cylinders’hydrodynamic forces have different changes for different types of vibration responses; the mean drag values of downstream cylinder are obviously lower than those of upstream cylinder due to the shielding effect of upstream cylinder; in the area where wake relaxation vibration appearing,the lift force’s mean square root values of two cylinders increase with increase in reduced flow velocity; the unsteady interactions between cylinders under some reduced flow velocities are revealed.

关键词

小间距比 / 串列双圆柱 / 涡激振动 / 振动响应

Key words

small spacing ratio / two tandem cylinders / vortex-induced vibration / vibration response

引用本文

导出引用
陈威霖,及春宁,许栋. 小间距比下串列双圆柱涡激振动数值模拟研究:振动响应和流体力[J]. 振动与冲击, 2018, 37(23): 261-269
CHEN Weilin, JI Chunning, XU Dong. Numerical simulations for VIVs of two tandem cylinders with small spacing ratios: vibration responses and hydrodynamic forces[J]. Journal of Vibration and Shock, 2018, 37(23): 261-269

参考文献

[1] Williamson C H K, Govardhan R. Vortex-Induced Vibrations [J]. Annual Review of Fluid Mechanics, 2004, 36: 413-455.
[2] Sarpkaya T. A Critical Review of the Intrinsic Nature of Vortex- Induced Vibrations [J]. Journal of Fluids and Structures, 2004, 19: 389-447.
[3] Bearman P W. Circular cylinder wakes and vortex-induced vibrations [J]. Journal of Fluids and Structures, 2011, 27: 648-658.
[4] Ji C, Xiao Z, Wang Y, et al. Numerical Investigation on Vortex- Induced Vibration of an Elastically Mounted Circular Cylinder at Low Reynolds Number Using the Fictitious Domain Method [J]. International Journal of Computational Fluid Dynamics, 2011, 25(4): 207-221.
[5] Placzek A, Sigrist J F, Hamdouni A. Numerical Simulation of an Oscillating Cylinder in a Cross-Flow at Low Reynolds Number: Forced and Free Oscillations[J]. Computers & Fluids, 2009, 38: 80-100.
[6] Govardhan R, Williamson C H K. Modes of Vortex Formation and Frequency Response of a Freely Vibrating Cylinder [J]. Journal of Fluids Mechanics, 2000, 420: 85-130.
[7] Khalak A, Williamson C H K. Motions, Forces and Mode Transitions in Vortex-Vibrations at Low Mass-Damping [J]. Journal of Fluids and Structures, 1999, 13: 813-851.
[8] 及春宁,陈威霖,徐万海. 正方形顺排排列四圆柱流致振动响应研究[J]. 振动与冲击, 2016, 35(11): 54-60.
JI Chun-ning, CHEN Wei-lin, XU Wan-hai. Investigation on the responses of flow-induced vibration of four square-arranged circular cylinders [J]. Journal of Vibration and Shock, 2016, 35(11): 54-60.
[9] Sumner D. Two circular cylinders in cross-flow: a review [J]. Journal of Fluids and Structures, 2010, 26: 849-899.
[10] Papaioannou G V, Yue D K P, Triantafyllou M S, et al. On the effect of spacing on the vortex-induced vibrations of two tandem cylinders [J]. Journal of Fluids and Structures, 2008, 24: 833-854.
[11] Prasanth T K, Mittal S. Flow-induced oscillation of two circular cylinders in tandem arrangement at low Re [J]. Journal of Fluids and Structures, 2009, 25: 1029-1048.
[12] Zhao M, Cui Z, Kwok K, et al. Wake-induced vibration of a small cylinder in the wake of a large cylinder [J]. Ocean Engineering, 2016, 113: 75-89.
[13] Bao Y, Huang C, Zhou D, et al. Two-degree-of-freedom flow-induced vibrations on isolated and tandem cylinders with varying natural frequency ratios [J]. Journal of Fluids and Structures, 2012, 35: 50-75.
[14] Mysa R C, Kaboudian A, Jaiman R K. On the origin of wake-induced vibration in two tandem circular cylinders at low Reynolds number [J]. Journal of Fluids and Structures, 2016, 61: 76-98.
[15] King R, Johns D J. Wake interaction experiments with two flexible circular cylinders in flowing water [J]. Journal of Sound Vibration, 1976, 45: 259-283.
[16] Brika D, Laneville A. The flow interaction between a stationary cylinder and a downstream flexible cylinder [J]. Journal of Fluids and Structures, 1999, 13: 579-606.
[17] Assi G R S, Meneghini, J R, Aranha J A P, et al. Experimental investigation of flow-induced vibration interference between two circular cylinders [J]. Journal of Fluids and Structures, 2006, 22: 819-827.
[18] Assi G R S, Bearman P W, Meneghini J R. On the wake-induced vibration of tandem circular cylinders: the vortex interaction excitation mechanism [J]. Journal of Fluid Mechanics, 2010, 661: 365-401.
[19] Ji C, Munjiza A, Williams J J R. A novel iterative direct-forcing immersed boundary method and its finite volume applications [J]. Journal of Computational Physics, 2012, 231(4): 1797-1821.
[20] Sen S, Mittal S, Biswas G. Steady separated flow past a circular cylinder at low Reynolds numbers [J]. Journal of Fluid Mechanics, 2009, 620: 89-119.
[21] 陈威霖,及春宁. 单圆柱涡激振动中的不连续和相位跳跃现象研究[J]. 水动力学研究与进展, 2016, 31(4): 441-448.
CHEN Wei-lin, JI Chun-ning. Vibration amplitude discontinuity and phase jump of vortex-induced vibration of an isolated circular cylinder [J]. Chinses Journal of Hydrodaymics, 2016, 31(4): 441-448.
[22] Chen W, Ji C, Xu W, et al. Response and wake patterns of two side-by-side elastically supported circular cylinders in uniform laminar cross-flow [J]. Journal of Fluids and Structures, 2015, 55: 218-236.
[23] 及春宁,陈威霖,黄继露,等. 串列双圆柱流致振动的数值模拟及其耦合机制[J]. 力学学报, 2014, 46(6): 862-870.
JI Chun-ning, CHEN WeiI-lin, HUANG Ji-lu, et al. Numerical investigation on flow-induced vibration of two cylinders in tandem arrangements and its coupling mechanisms [J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 862-870.
[24] Chen W, Ji C, Wang R, et al. Flow-induced vibrations of two side-by-side circular cylinders: Asymmetric vibration, symmetry hysteresis and near-wake patterns [J]. Ocean Engineering, 2015, 110: 244-257.
[25] 陈威霖,及春宁,徐万海. 并列双圆柱流致振动的不对称振动和对称性迟滞研究[J]. 力学学报, 2015, 47(5): 731-739.
CHEN Wei-lin, JI Chun-ning, XU Wan-hai. Numerical investigation on the asymmetric vibration and symmetry hysteresis of flow-induced vibration of two side-by-side cylinders [J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 731-739.
[26] Jiang R-J, Lin J-Z, Ku X-K. Flow-induced vibrations of two tandem circular cylinders in a parallel-wall channel [J]. Physics of Fluids, 2014, 26: 104102.
[27] 陈威霖. 圆柱流致振动数值模拟及其机理研究 [D]. 天津:天津大学,硕士论文,2015.
CHEN Wei-lin. Numerical investigation on the mechanisms of flow-induced vibration of circular cylinders [D]. Tianjin: Tianjin University, Master dissertation, 2015.
[28] Mittal S, Kumar V. Flow-induced oscillations of two cylinders in tandem and staggered arrangements [J]. Journal of Fluids and Structures, 2001, 15: 717-736.
[29] Prasanth T K, Mittal S. Vortex-induced vibration of two circular cylinders at low Reynolds number [J]. Journal of Fluids and Structures, 2009, 25: 731-741.
[30] Prasanth T K, Mittal S. Vortex-induced vibrations of a circular cylinder at low Reynolds numbers [J]. Journal of Fluid Mechanics, 2008, 594: 463-491.
[31] Zdravkovich, M M. Flow induced oscillations of two interfering circular cylinders [J]. Journal of Sound Vibration, 1985, 101: 511-521.
[32] Hover F S, Triantafyllou M S. Galloping response of a cylinder with upstream wake interference [J]. Journal of Fluids and Structures, 2001, 15: 503-512.
[33] Bokaian A, Geoola F. Wake-induced galloping of two interfering circular cylinders [J]. Journal of Fluid Mechanics, 1984, 146: 383-415.
[34] Carberry J, Sheridan J, Rockwell D. Controlled oscillations of a cylinder: forces and wake modes [J]. Journal of Fluid Mechanics, 2005, 538: 31-69.
[35] Brankovic M. Vortex-induced Vibration attenuation of circular cylinder with low mass and damping [D]. PhD thesis, Imperial College London, 2004.
[36] Qu L X, Norberg C, Davidson L, et al. Quantitative numerical analysis of flow past a circular cylinder at Reynolds number between 50 and 200 [J]. Journal of Fluids and Structures, 2013, 39: 347-370.
[37] Posdziech O, Grundmann R. A systematic approach to the numerical calculation of fundamental quantities of the two-dimensional flow over a circular cylinder [J]. Journal of Fluids and Structures, 2007, 23(3): 479-499.

PDF(2682 KB)

341

Accesses

0

Citation

Detail

段落导航
相关文章

/