小间距比下串列双圆柱涡激振动数值模拟研究:尾流和耦合机制

陈威霖,及春宁,许栋

振动与冲击 ›› 2018, Vol. 37 ›› Issue (23) : 270-277.

PDF(2987 KB)
PDF(2987 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (23) : 270-277.
论文

小间距比下串列双圆柱涡激振动数值模拟研究:尾流和耦合机制

  • 陈威霖,及春宁,许栋
作者信息 +

Numerical simulations for VIV of two tandem cylinders with small spacing ratios: wake flow and interaction mechanism

  • CHEN Weilin,  JI Chunning, XU Dong
Author information +
文章历史 +

摘要

对小间距比( )下串列双圆柱涡激振动的尾流和耦合机制进行了全面的研究,其中雷诺数为 。两圆柱均仅作横向振动。对尾流的研究发现,当间距比 时,小折合流速时对应经典的卡门涡街,而折合流速较大时,尾流则变得混乱起来,难以分辨其模式。当间距比 时,尾流均为规律的2S模式。耦合机制分析发现,串列双圆柱平衡位置差的变化促成了在间距比 时广折合流速响应的存在;而多频成分参与的不稳定耦合作用成为在间距比 时类尾流弛振现象的诱因;大振幅响应在间距比 时得以持续的动力则源于上游圆柱脱落旋涡产生的低压区和下游圆柱低频的运动。此外,一种新的平衡位置间歇跳跃现象在间距比 和折合流速 时出现,且响应在上侧的新平衡位置能稳定更长的时间。

Abstract

A detailed investigation was performed for VIVs of two tandem cylinders to analyze wake flow and interaction mechanism.The results showed that when L*=1.1—1.3,the classical Karman vortex street exists at small reduced flow velocities,while wake flow gets confused at larger reduced flow velocities; when L*=1.5,wake flows are regular 2S modes; when L*=1.1,the variation of equilibrium position difference of two tandem cylinders makes vibration responses exist under wider reduced flow velocities; when L*=1.2—1.3,the unsteady interactions with multi-frequency components participated induce quasi-wake relaxation vibration appearing; when L*=1.1,the low pressure region produced by shedding vortex of upstream cylinder and low-frequency motion of downstream cylinder are the dynamic sources to sustain large amplitude vibration responses; when L*=1.1 and Ur=15,a new intermittent jumping phenomenon of equilibrium position of two cylinders occurs,and the response can last longer time at the new equilibrium position on upper side.

关键词

小间距比 / 串列双圆柱 / 涡激振动 / 耦合机制

Key words

small spacing ratio / two tandem cylinders / vortex-induced vibration / coupling mechanism

引用本文

导出引用
陈威霖,及春宁,许栋. 小间距比下串列双圆柱涡激振动数值模拟研究:尾流和耦合机制[J]. 振动与冲击, 2018, 37(23): 270-277
CHEN Weilin, JI Chunning, XU Dong. Numerical simulations for VIV of two tandem cylinders with small spacing ratios: wake flow and interaction mechanism[J]. Journal of Vibration and Shock, 2018, 37(23): 270-277

参考文献

[1] Sarpkaya T. A Critical Review of the Intrinsic Nature of Vortex- Induced Vibrations [J]. Journal of Fluids and Structures, 2004, 19: 389-447.
[2] Williamson C H K, Govardhan R. A brief review of recent results in vortex-induced vibrations [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 713-735.
[3] Bearman P W. Circular cylinder wakes and vortex-induced vibrations [J]. Journal of Fluids and Structures, 2011, 27: 648-658.
[4] Wu X, Ge F, Hong Y. A review of recent studies on vortex-induced vibrations of long slender cylinders [J]. Journal of Fluids and Structures, 2012, 28: 292-308.
[5] Modarres-Sadeghi M, Mukundan H, Dahl J M, et al. The effect of higher harmonic forces of fatigue life of marine risers [J]. Journal of Sound and Vibration, 2010, 329: 43-55.
[6] Bernitsas M M, Raghavan K. Fluid Motion Energy Converter [P]. International Provisional Patent Application, U.S. Patent and Trademark Office, 2005.
[7] Lee J H, Bernitsas M M. High-damping, high-Reynolds VIV tests for energy harnessing using the VIVACE converter [J]. Ocean Engineering, 2011, 38: 1697-1712.
[8] Bernitsas M M, Raghavan K, Ben-Simon Y, et al. VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow [J]. Journal of Offshore Mechanics and Arctic Engineering, 2008, 130: 041101.
[9] Williamson C H K, Roshko A. Vortex formation in the wake of an oscillating cylinder [J]. Journal of Fluids and Structures, 1988, 2: 355-381.
[10] Williamson C H K, Govardhan R. Vortex- Induced Vibrations [J]. Annual Review of Fluid Mechanics, 2004, 36: 413-455.
[11] Du L, Jing X, Sun X. Modes of Vortex Formation and Transition to Three- Dimensionality in the Wake of a Freely Vibrating Cylinder [J]. Journal of Fluids and Structures, 2014, 49: 554-573.
[12] Raghavan K, Bernitsas M M. Enhancement of High Damping VIV through Roughness Distribution for Energy Harnessing [C]// OMAE2008. Estoril, Portugal, Paper No.58006, 2008.
[13] Ji C, Xiao Z, Wang Y, et al. Numerical Investigation on Vortex- Induced Vibration of an Elastically Mounted Circular Cylinder at Low Reynolds Number Using the Fictitious Domain Method [J]. International Journal of Computational Fluid Dynamics, 2011, 25(4): 207-221.
[14] Prasanth T K, Mittal S. Vortex- Induced Vibrations of a Circular Cylinder at Low Reynolds Numbers [J]. Journal of Fluids Mechanics, 2007, 594: 463- 491.
[15] Govardhan R, Williamson C H K. Modes of Vortex Formation and Frequency Response of a Freely Vibrating Cylinder [J]. Journal of Fluids Mechanics, 2000, 420: 85-130.
[16] Khalak A, Williamson C H K. Motions, Forces and Mode Transitions in Vortex-Vibrations at Low Mass-Damping [J]. Journal of Fluids and Structures, 1999, 13: 813-851.
[17] Williamson C H K, Jauvtis N. A high-amplitude 2T mode of vortex-induced vibration for a light body in XY motion [J]. European Journal of Mechanics B/Fluids, 2004, 23: 107–114.
[18] 及春宁,陈威霖,徐万海. 正方形顺排排列四圆柱流致振动响应研究[J]. 振动与冲击, 2016, 35(11): 54-60.
JI Chun-ning, CHEN Wei-lin, XU Wan-hai. Investigation on the responses of flow-induced vibration of four square-arranged circular cylinders [J]. Journal of Vibration and Shock, 2016, 35(11): 54-60.
[19] Prasanth T K, Mittal S. Flow-induced oscillation of two circular cylinders in tandem arrangement at low Re [J]. Journal of Fluids and Structures, 2009, 25: 1029-1048.
[20] Prasanth T K, Mittal S. Vortex-induced vibration of two circular cylinders at low Reynolds number [J]. Journal of Fluids and Structures, 2009, 25: 731-741.
[21] 及春宁,陈威霖,黄继露,等. 串列双圆柱流致振动的数值模拟及其耦合机制[J]. 力学学报, 2014, 46(6): 862-870.
JI Chun-ning, CHEN WeiI-lin, HUANG Ji-lu, et al. Numerical investigation on flow-induced vibration of two cylinders in tandem arrangements and its coupling mechanisms [J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 862-870.
[22] Mysa R C, Kaboudian A, Jaiman R K. On the origin of wake-induced vibration in two tandem circular cylinders at low Reynolds number [J]. Journal of Fluids and Structures, 2016, 61: 76-98.
[23] Assi G R S, Meneghini, J R, Aranha J A P, et al. Experimental investigation of flow-induced vibration interference between two circular cylinders [J]. Journal of Fluids and Structures, 2006, 22: 819-827.
[24] Assi G R S, Bearman P W, Meneghini J R. On the wake-induced vibration of tandem circular cylinders: the vortex interaction excitation mechanism [J]. Journal of Fluid Mechanics, 2010, 661: 365-401.
[25]Ji C, Munjiza A, Williams J J R. A novel iterative direct-forcing immersed boundary method and its finite volume applications [J]. Journal of Computational Physics, 2012, 231(4): 1797-1821.
[26]Sen S, Mittal S, Biswas G. Steady separated flow past a circular cylinder at low Reynolds numbers [J]. Journal of Fluid Mechanics, 2009, 620: 89-119.
[27] 陈威霖,及春宁. 单圆柱涡激振动中的不连续和相位跳跃现象研究[J]. 水动力学研究与进展, 2016, 31(4): 441-448.
CHEN Wei-lin, JI Chun-ning. Vibration amplitude discontinuity and phase jump of vortex-induced vibration of an isolated circular cylinder [J]. Chinses Journal of Hydrodaymics, 2016, 31(4): 441-448.
[28] Chen W, Ji C, Xu W, et al. Response and wake patterns of two side-by-side elastically supported circular cylinders in uniform laminar cross-flow [J]. Journal of Fluids and Structures, 2015, 55: 218-236.
[29] Chen W, Ji C, Wang R, et al. Flow-induced vibrations of two side-by-side circular cylinders: Asymmetric vibration, symmetry hysteresis and near-wake patterns [J]. Ocean Engineering, 2015, 110: 244-257.
[30] 陈威霖,及春宁,徐万海. 并列双圆柱流致振动的不对称振动和对称性迟滞研究[J]. 力学学报, 2015, 47(5): 731-739.
CHEN Wei-lin, JI Chun-ning, XU Wan-hai. Numerical investigation on the asymmetric vibration and symmetry hysteresis of flow-induced vibration of two side-by-side cylinders [J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 731-739.
[31] Assi G R S, Bearman P W, Carmo B S, et al. The role of wake stiffness on the wake-induced vibration of the downstream cylinder of a tandem pair [J]. Journal of Fluid Mechanics, 2013, 718: 210-245.
[32] Papaioannou G V, Yue D K P, Triantafyllou M S, et al. On the Effect of Spacing on the Vortex-Induced Vibrations of Two Tandem Cylinders [J]. Journal of Fluids and Structures, 2008, 24: 833-854.
 

PDF(2987 KB)

Accesses

Citation

Detail

段落导航
相关文章

/