压电陶瓷振动传感器的迟滞非线性误差补偿研究

陈高华1,闫献国2,郭宏2,李志飞1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (23) : 278-285.

PDF(1470 KB)
PDF(1470 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (23) : 278-285.
论文

压电陶瓷振动传感器的迟滞非线性误差补偿研究

  • 陈高华1,闫献国2,郭宏2,李志飞1
作者信息 +

Error compensation for hysteresis nonlinearity of piezoelectric ceramic vibration sensors

  • CHEN Gaohua1,YAN Xianguo2,GUO Hong2,LI Zhifei1
Author information +
文章历史 +

摘要

针对振动测试中压电陶瓷传感器的迟滞非线性会影响检测精度的问题,分析了压电陶瓷的微观极化机理,解释了压电陶瓷传感器产生迟滞非线性的原因。为了有效补偿压电陶瓷的迟滞非线性,提高检测精度,提出了一种可以反映压电陶瓷传感器非对称迟滞特性的改进Bouc-wen模型,研究并给出了模型参数对迟滞曲线的大小、形状及平稳性影响关系和逆模型的求取方法。利用改进Bouc-wen逆模型作为补偿器来补偿压电陶瓷传感器的迟滞非线性,实验验证结果表明: 采用逆补偿后,校正位移总是能够很好跟踪传感器的实际输入位移, 有效保证了检测精度。

Abstract

The hysteresis nonlinearity of piezoelectric ceramic sensors affects detection accuracy in vibration measurement.Here,the micro-polarization mechanism of piezoelectric ceramics was analyzed and the reason why piezoelectric ceramic sensors have hysteresis nonlinearity was explained.In order to effectively compensate the hysteresis nonlinearity of piezoelectric ceramics and improve the detection accuracy,a modified Bouc-Wen model to reflect the asymmetric hysteresis feature of piezoelectric ceramic sensors was proposed.The effects of model parameters on magnitude,shape and stationarity of hysteresis curves were analyzed.The solving method of the inverse model was derived.The modified Bouc-Wen inverse model was taken as a compensator to compensate the hysteresis nonlinearity of piezoelectric ceramic sensors.The test results showed that after using the inverse compensation,the corrected displacement can always track the actual input displacement of the sensor to effectively guarantee its detection accuracy.

关键词

压电陶瓷传感器 / 迟滞非线性 / 迟滞模型 / 逆补偿 / 检测精度

Key words

piezoceramic sensor / hysteresis nonlinearity / hysteresis model / inverse compensation / detection accuracy

引用本文

导出引用
陈高华1,闫献国2,郭宏2,李志飞1. 压电陶瓷振动传感器的迟滞非线性误差补偿研究[J]. 振动与冲击, 2018, 37(23): 278-285
CHEN Gaohua1,YAN Xianguo2,GUO Hong2,LI Zhifei1. Error compensation for hysteresis nonlinearity of piezoelectric ceramic vibration sensors[J]. Journal of Vibration and Shock, 2018, 37(23): 278-285

参考文献

[1]JENNIONSIK. Integrated vehicle health management: perspectiveonan emerging field[M].
New York, USA: SAE International,2011:124-135.
[2]Yuan G, Wang D H, Li S D. Single piezoelectric ceramic stack actuator based fast steering mirror with fixed rotation axis and large excursion angle[J]. Sensors & Actuators A Physical, 2015, 235:292-299.
[3] Li W, Chen X. Compensation of hysteresis in piezoelectric actuators without dynamics modeling[J]. Sensors & Actuators A Physical, 2013, 199:89-97.
[4] 崔玉国,朱耀祥,娄军强等.压电微夹持钳钳指位移与夹持力的检测[J].光学 精密工程,2015,23(5): 1372-1379.
CUI Y G, ZHU Y X, LOU J Q, et al.Detection of finger displcement and gripping force of piezoelectric micro-gripper [J]. Optics and Precision Engineering, 2015, 23(5): 1372-1379.
[5] 方楚,郭劲,徐新行等.压电陶瓷迟滞非线性前馈补偿器[J].光学精密工程,2016, 24(09):2217-2223.
FANG C,GUO J,XU X X, et al.Compensating
controller for hysteresis nonlinear of piezoelectric ceramics[J]. Optics and Precision Engineering, 2016, 24(09):2217-2223.
[6] 聂泳忠,颜黄苹,黄元庆. 铋层状与铌酸锂复合压电陶瓷传感器的温度特性[J]. 厦门大学学报 ( 自然科学版 ),2016,55(03):441-444.
Nie Yongzhong, Yan Huangping, Huang Yuanqing. Temperature characteristics of a Bi4Ti3O12-LiNbO3 compound piezoelectric ceramic sensor[J]. Journal of Xiamen University(Natural Science), 2016,55(03):441-444.
[7]Juhdsz L, Maas J, Borovac B. Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators[J]. Mechatronics, 2011, 21(1):329-338.
[8]郭士旭,余尚江,陈晋央等. 压电式压力传感器动态特性补偿技术研究[J]. 振动与冲击,2016,35(02):136-140.
GUO Shi-xu,YU Shang-jiang,CHEN Jin-yang, et al. Dynamic compensation technique for piezoelectric pressure sensors[J]. Journal of Vibration and Shock, 2016, 35(02):136-140.
[9]李以农,张锋,郑玲. 压电作动器的迟滞非线性建模和实时补偿控制仿真[J].功能材料,2009,40(08):1297-1301.
LI Y N, ZHANG F,ZHEN L. Modeling and real-time compensation control of nonlinear hysteresis for piezoelectric actuator[J]. Functional Materials,2009,
40(08):1297-1301.
[10] Mittal S, Menq C H. Hysteresis compensation in electromagnetic actuators through Preisach model inversion[J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(4):394-409.
[11] Zirka S E, Moroz Y I, Marketos P, et al. Dynamic hysteresis modeling[J]. Physica B Condensed Matter, 2004, 343(1):90-95.
[12] Gaul L, Becker J. Model-based piezoelectric hysteresis and creep compensation for highly-dynamic feedforward rest-to-rest motion control of piezoelectrically actuated flexible structures[J]. International Journal of Engineering Science, 2009, 47(11–12):1193-1207.
[13]MARTIN B. Some mathematical properties of the preisach model for hysteresis [J]. Transcations on Magnetics.25(04):1989.
[14] Liu S, Su C Y. A modified generalized Prandtl-Ishlinskii model and its inverse for hysteresis compensation[C]//American Control Conference. 2013:4759-4764.
[15]BAHADUR I M, MILLS J K. A new model of hysteresis of piezoelectric actuators[C].Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation,Beijing,China,2011.
[16]XIAO SH L, LI Y M. Dynamic compensation and H∞ control for piezoelectric actuators based on the inverse Bouc-Wen model[J].Robotics and Computer-Integrated Manufacturing,2014, 30:47-54.
[17] Gilberto A. Ortiz,Diego A. Alvarez,Daniel Bedoya-Ruíz. Identification of Bouc–Wen type models using the Transitional Markov Chain Monte Carlo method [J]. Computers and Structures, 2015,146:252-269.
[18] 张福学. 现代压电学[M].北京: 科学出版社,2003.
ZHANG F X. Modern piezoelectricity[M].Beijing: Science Press,2003.
[19] Mohammad Asif Zaman, Urmita Sikder. Bouc–Wen hysteresis model identification using Modified Firefly Algorithm [J]. Journal of Magnetism and Magnetic Materials, 2015,229-233.
[20] Xin B, Chen J, Zhang J, et al. Hybridizing Differential Evolution and Particle Swarm Optimization to Design Powerful Optimizers: A Review and Taxonomy[J]. IEEE Transactions on Systems Man & Cybernetics Part C, 2012, 42(5):744-767.

PDF(1470 KB)

Accesses

Citation

Detail

段落导航
相关文章

/