漂浮式风力机结构动力学响应TMD控制及其参数优化研究

丁勤卫,郝文星,李春,叶柯华,王渊博

振动与冲击 ›› 2018, Vol. 37 ›› Issue (23) : 61-70.

PDF(3941 KB)
PDF(3941 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (23) : 61-70.
论文

漂浮式风力机结构动力学响应TMD控制及其参数优化研究

  • 丁勤卫,郝文星,李春,叶柯华,王渊博
作者信息 +

TMD Control and its parametric optimization for structural dynamic response of a floating wind turbine

  • DING Qinwei, HAO Wenxing, LI Chun, YE Kehua, WANG Yuanbo
Author information +
文章历史 +

摘要

漂浮式风力机的稳定性研究已成为风电领域中颇具挑战性的问题。分别采用湍流风谱和波浪谱方法建立速度、方向均剧烈波动的湍流风和不规则波,以ITI Barge平台漂浮式风力机为研究对象,提出在机舱配置调谐质量阻尼器(TMD,Tuned Mass Damper)对风力机进行稳定性控制,基于气动-水动-伺服-弹性仿真平台FAST计算了风波联合作用下TMD风力机的动力学特性,并进一步采用多岛遗传算法对TMD诸结构参数(质量、刚度和阻尼)进行优化设计。结果表明:机舱配置TMD可实现漂浮式风力机稳定性的控制,平台横荡、横摇运动幅度和塔尖侧向位移均明显减小;塔尖侧向位移及平台横摇幅值随TMD质量增加均呈现出先减小后增大的趋势,阻尼及刚度变化对其影响较小;质量为21393kg、阻尼为13635 N/(m/s)及刚度为6828N/m为最优的TMD结构参数;配置优化TMD后,漂浮式风力机横摇运动及塔尖侧向位移降低效果更明显,稳定性分别提高了约53%和50%。计算结果验证了所提出TMD控制、优化方法及优化结果的有效性和可靠性,可为海上漂浮式风力机的稳定性研究提供参考。

Abstract

Studying stability of floating offshore wind turbines is a challenging problem in wind power field.Here,turbulence wind and irregular wave models with sharp fluctuations both in velocity and direction were established,respectively based on the turbulence wind spectrum and the wave one.An ITI Energy Barge platform floating wind turbine was taken as a study object.The stability control was conducted for the floating wind turbine with TMD equipped in its nacelle.Dynamic characteristics of the TMD floating wind turbine under the action of wind combined with wave were calculated based on the aerodynamic-hydrodynamic-servo-elastic simulation platform FAST.Furthermore,the multi-island genetic algorithm was used to optimize TMD structure parameters including mass,stiffness and damping.The results showed that the wind turbine nacelle equipped with TMD can realize the floating wind turbine’s stability control to obviously reduce amplitudes of platform sway and roll motions,and lateral displacement of platform tower top; lateral displacement of tower top and amplitude of platform roll firstly decrease and then increase with increase in TMD mass,while changes of TMD’s stiffness and damping have little effects on them; the TMD optimal structure parameters are mass of 21 393 kg,damping of 13 635 N/(m/s) and stiffness of 6 828 N/m; after equipped with the optimal TMD,the wind turbine rolling motion and its lateral displacement of tower top drop more obviously,their stabilities increase by 53% and 50%,respectively; the effectiveness and reliability of the proposed TMD control,optimization method and optimization results are verified with the calculation results; the study results can provide a reference for the stability study on offshore floating wind turbines.

关键词

漂浮式风力机 / 调频质量阻尼器 / 多岛遗传算法 / 横摇 / 湍流风 / 不规则波

Key words

floating wind turbine / TMD / Multi-Island Genetic Algorithm / roll / turbulent wind / irregular wave

引用本文

导出引用
丁勤卫,郝文星,李春,叶柯华,王渊博. 漂浮式风力机结构动力学响应TMD控制及其参数优化研究[J]. 振动与冲击, 2018, 37(23): 61-70
DING Qinwei, HAO Wenxing, LI Chun, YE Kehua, WANG Yuanbo. TMD Control and its parametric optimization for structural dynamic response of a floating wind turbine[J]. Journal of Vibration and Shock, 2018, 37(23): 61-70

参考文献

[1] 李春,叶舟,高伟,等.现代大型风力机设计原理[M].上海:上海科学技术出版社,2012.
 LI Chun, YE Zhou, GAO Wei, et al. Modern large-scale wind turbine design principle [M]. Shanghai, Shanghai Scientific & Technology Publishers, 2012.
[2] 丁勤卫,李春,叶舟,等.浮式风力机平台动态响应优化研究[J].太阳能学报,2017,38(5):1405-1414.
DING Qinwei, LI Chun, YE Zhou, et al. Research on optimization for dynamic response of the platform of floating wind turbine[J]. ACTA ENERGIAE SOLARIS SINCA, 2017, 38(5): 1405-1414.
[3] Jonkman J. Dynamics modeling and loads analysis of an offshore floating wind turbine[D]. Denver: National Renewable Energy Laboratory, 2008.
[4] Musial W, Butterfield S, Boone A. Feasibility of Floating Platform Systems for Wind turbines[R]. Golden, CO, USA: National Renewable Energy Laboratory, 2003: NREL/CP-500-34874.
[5] 丁勤卫,李春,周国龙,等.陆海风力机动态响应对比[J].动力工程学报,2016,36(1):65-73.
Ding Qinwei, Li Chun, Zhou Guolong, et al. Comparison of dynamic response between stationary and floating wind turbine[J]. Journal of Chinese Society of Power Engineering, 2016, 36(1): 65-73.
[6] DING Qinwei, LI Chun. Research on the influence of helical strakes on dynamic response of floating wind turbine platform[J]. China Ocean Engineering, 2017, 31(2): 131-140.
[7] 丁勤卫,李春,叶柯华,等.风波流对多平台阵列浮式风力机Spar平台运动特性的影响[J].农业工程学报,2016,32(21):223-230.
DING Qinwei, LI Chun, YE Kehua, et al. Effect of Wind, Wave and Current on movement characteristics of array of floating wind turbine Spar platform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 223-229.
[8] Namik H, Stol K. Individual blade pitch control of floating wind turbines[J]. Wind Energy, 2010; 13(1): 74–85.
[9] Fischer T, Vries W, Rainey P, et al. Offshore support structure optimization by means of integrated design and controls[J]. Wind Energy, 2012, 15(1): 99–117.
[10] 樊亚军.海上漂浮式风力机结构振动的主动控制[J].西安工业大学学报,2015,35(12):978-983.
FAN Yajun. Active control of structural vibration of floating wind turbine[J]. Journal of Xi’an Technological University, 2016, 35(12): 978-983.
[11] Stewart G M, Lackner M A. The impact of passive tuned mass dampers and wind-wave misalignment on offshore wind turbine loads[J]. Engineering Structures, 2014, 73(3): 54-61.
[12] 阎石,牛健,于君元,等.风力发电机塔架结构减振控制研究综述[J].防灾减灾工程学报,2016,36(1):75-83.
YAN Shi, NIU Jian, YU Junyuan, et al. Review of vibration control research of wind turbine tower structures[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(1): 75-83.
[13] 杨永春,李响亮,刘坤宁,等.TMD在海上风电塔架中的减振效果研究[J].船舶工程,2014,36(s1):235-238.
YANG Yongchun, LI Xiangliang1, LIU Kunning, et al. Research on TMD’s vibration reduction effect in offshore wind tower[J]. SHIP ENGINEERING, 2014, 36(s1): 235-238.
[14] Gordon M S, Matthew A L. The effect of actuator dynamics on active structural control of offshore wind turbines[J]. Engineering Structures, 2011, 33(5): 1807-1816.
[15] Matthew A L, Mario A R. Structural control of floating wind turbines[J]. Mechatronics, 2011, 21(4): 704-719.
[16] Latha S, Vengatesan V. Hydrodynamic response of a stepped spar floating wind turbine: Numerical modeling and tank testing[J]. Renewable Energy, 2013, 52(4): 160-174.
[17] 穆安乐,王超,刘宏昭,等.利用调频质量阻尼器结构实现海上漂浮式风力机的稳定性控制[J].中国电机工程学报,2013,33(35):89-95.
MU Anle, WANG Chao, LIU Hongzhao, et al. Stability control of floating wind turbines with tuned mass damper structure[J]. Proceedings of the CSEE, 2013, 33(35):89-95.
[18] Jonkman J M, Matha D. A Quantitative Comparison of the Response of Three Floating Platforms [C]//. European Offshore Wind 2009 Conference and Exhibition, Stockholm, 2009.
[19] Roberston A N, Jonkman J M. Loads Analysis of Several Offshore Floating Wind Turbine Concepts [C]//. International Society of offshore and Polar Engineers 2011 Conference, Hawaii, 2011.
[20] 杨阳,李春,袁全勇,等.地震作用下风力机时频域动态响应特性分析 [J].振动与冲击,2017,36(18):245-251.
YANG Yang, LI Chun, YUAN Quanyong,et al. Analysis of dynamic response characteristics in Time-Frequency domain of wind turbine on earthquake loading[J]. Journal of Vibration and Shock, 2017, 36(18): 245-251.
[21] 丁勤卫,李春,叶舟,等.风突变效应对风力机振动特性影响[J].振动与冲击,2016,35(21):47-52.
DING Qinwei, LI Chun, YE Zhou, et al. Effects of wind gust on a wind turbine’s vibration characteristics[J]. JOURNAL OF VIBRATION AND SHOCK, 2016, 35(21): 47-52.
[22] 杨阳,李春,叶柯华,等.多工况下大型风力机动态响应研究[J].工程热物理学报,2016,37(10):2123-2129.
YANG Yang, LI Chun, YE Kehua, et al. Research on dynamic response of large-scale wind turbine under multiple loading conditions[J]. JOURNAL OF ENGINEERING THERMOPHYSICS, 2016, 37(10):2123-2129.
[23] 王磊,何玉林,金鑫,等.漂浮式海上风电机组动力学仿真分析[J].中南大学学报(自然科学版),2012,43(4):1309-1314.
WANG Lei, JIN Xin, HE Yulin, et al. Dynamic simulation analysis of floating wind turbine[J]. Journal of Central South University(Science and Technology), 2012, 43(4):1309-1315.
[24] 金鑫,钟翔,何玉林,等.漂浮特性对风力发电机振动影响[J].振动与冲击,2013,32(15):26-31.
JIN Xin, ZHONG Xiang, HE Yulin, et al. Floating characteristic’ impact on vibration of wind turbine[J]. JOURNAL OF VIBRATION AND SHOCK, 2013, 32(15):26-31.
[25] 唐友刚,桂龙,曹菡,等.海上风机半潜式基础概念设计与水动力性能分析[J].哈尔滨工程大学学报,2014,35(11):1314-1319.
TANG Yougang, GUI Long, CAO Han, et al. Conceptual design and hydrodynamic performance of the semi-submersible floating foundation for wind turbines[J]. Journal of Harbin Engineering University, 2014, 35(11):1314-1319.
[26] Karimirad M, Moan T. Extreme Dynamic Structural Response Analysis of Catenary Moored Spar Wind Turbine in Harsh Environmental Conditions[J]. Journal of Offshore Mechanics & Arctic Engineering, 2011, 133(4): 041103.
[27] 丁勤卫,李春,杨阳,等.极限海况下三种漂浮式风力机平台的动态响应对比[J].水资源与水工程学报,2015,26(1):159-165.
DING Qinwei, LI Chun, YANG Yang, et al. Comparison of dynamic response for three floating wind turbine platforms under extreme sea condition[J]. Journal of Water Resources & Water Engineering, 2015, 26(2): 159-165.
[28] 安利强,孙少华,周邢银.风波联合作用下5MW海上风力机的疲劳载荷特性分析[J].可再生能源,2014,32(7)66-73.
AN Liqiang, SUN Shaohua, ZHOU Xingyin. Fatigue load characteristic analysis of 5MW offshore wind turbine under combined wind and wave loads[J]. Renewable Energy Resources, 2014, 32(7): 66-73.
[29] 陶尧森.船舶耐波性[M].上海:上海交通大学出版社,1985.
TAO Yaosen. Ship’s seakeeping[M]. Shanghai: Shanghai Jiao Tong University Press, 1985.
[30] Den Hartog J P. Mechanical vibrations[M]. McGraw-Hill Book Company Inc., New York, USA, 1956.
[31] 符川.TLCD-结构转化为TMD-结构减振控制的研究[J].工程力学,2016,33(04):114-120.
FU Chuan. vibration control of transforming TLCD-structure to TMD-structure[J]. Engineering Mechanics, 2016, 33(4): 114-129.
[32] 周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
ZHOU Ming, SUN Shudong. Genetic algorithms theory and applications[M]. Beijing, National Defense Industry Press, 1999.

PDF(3941 KB)

Accesses

Citation

Detail

段落导航
相关文章

/