混合润滑状态下粗糙界面法向接触刚度计算模型与特性研究

肖会芳1,2,孙韵韵1,徐金梧1,邵毅敏3

振动与冲击 ›› 2018, Vol. 37 ›› Issue (24) : 106-114.

PDF(2035 KB)
PDF(2035 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (24) : 106-114.
论文

混合润滑状态下粗糙界面法向接触刚度计算模型与特性研究

  • 肖会芳1,2,孙韵韵1,徐金梧1,邵毅敏3
作者信息 +

A calculation model for the normal contact stiffness of rough surface in mixed lubrication

  • XIAO Huifang1,2,SUN Yunyun1,XU Jinwu1,SHAO Yimin3
Author information +
文章历史 +

摘要

机械装备系统的静态特性和动力学特性取决于系统接触界面法向接触刚度。基于粗糙表面形貌的Greenwood-Williamson统计模型描述与液体润滑界面的油膜共振模型和弹簧模型,推导了机械结构混合润滑粗糙界面固体接触刚度和液体润滑介质接触刚度,并实现粗糙微凸体固体接触刚度与液体润滑介质接触刚度的耦合,提出了一种混合润滑状态下粗糙界面法向接触刚度的计算模型,分析了接触界面形貌参数、润滑介质和接触基体材料属性对界面法向接触刚度的影响规律。结果表明,润滑介质的声阻抗是影响液体接触刚度的主要因素,声阻抗增大时,液体接触刚度减小;接触基体材料的表面形貌和弹性模量是影响固体接触刚度的主要因素,界面粗糙度和弹性模量增大时,固体接触刚度增大。混合润滑粗糙界面接触刚度计算模型的提出,为机械结构润滑接触界面的刚度计算、性能预测与优化提供理论和实验参考。

Abstract

The normal contact stiffness is an essential parameter for describing the interface characteristics and exhibits significant influence on both the static and dynamic behavior of the mechanical system.In this work, a general contact stiffness model was proposed to study the mixed lubricated contact for rough surface contact.The total interfacial contact stiffness was composed of the dry rough surface contact stiffness and the liquid lubricant contact stiffness.The Greenwood-Williamson model was used for surface topography description and the whole dry rough contact stiffness was obtained.The liquid film stiffness was derived based on the film resonance model and the spring model spring model.Effects of surface roughness, property of lubricant layer and property of contact solid on the normal contact stiffness were analyzed.Results show that the acoustic impedance is the main factor determining the liquid film stiffness and the liquid film stiffness decreases with acoustic impedance.The surface topography and elastic modulus are the main factor determining the solid contact stiffness.The proposed calculation model for normal contact stiffness of rough surface in mixed lubrication provides foundation for stiffness calculation, performance predication and optimization of mechanical structure.

关键词

混合润滑 / 粗糙界面 / 固体接触刚度 / 液体介质接触刚度

Key words

Mixed lubrication / Rough surface / Solid contact stiffness / Liquid film stiffness

引用本文

导出引用
肖会芳1,2,孙韵韵1,徐金梧1,邵毅敏3. 混合润滑状态下粗糙界面法向接触刚度计算模型与特性研究[J]. 振动与冲击, 2018, 37(24): 106-114
XIAO Huifang1,2,SUN Yunyun1,XU Jinwu1,SHAO Yimin3. A calculation model for the normal contact stiffness of rough surface in mixed lubrication[J]. Journal of Vibration and Shock, 2018, 37(24): 106-114

参考文献

[1] Srikanth P, Sekhar A S. Effect of gear tooth breakage on the dynamic response in a wind turbine drive train subjected to stochastic load excitation [J]. Mechanisms and Machine Science, 2015, 21: 1333-1343.
[2] Liu J, Shao Y M. Dynamic modeling for rigid rotor bearing systems with a localized defect considering additional deformations at the sharp edges [J]. Journal of Sound and Vibration, 2017, 398: 84-102.
[3] Xiao H F, Shao Y M, Xu J W. Investigation into the energy dissipation of a lap joint using the one-dimensional microslip friction model[J]. European Journal of Mechanics - A/Solids, 2014, 43, 1-8.
[4] Oskar E L, Nordborg A, Arteaga I L. The influence of surface roughness on the contact stiffness and the contact filter effect in nonlinear wheel-track interaction [J]. Journal of Sound and Vibration, 2016, 366: 429-446.
[5] Carrelle A, Brennan M J, Waters T P, et al. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness [J]. International Journal of Mechanical Sciences, 2012, 55(1): 22-29.
[6] Zou H T, Wang B L. Investigation of the contact stiffness variation of linear rolling guides due to the effects of friction and wear during operation [J]. Tribology International, 2015, 92: 472-484.
[7] 李小彭, 潘五九, 高建卓, 等. 结合面形貌特性对模态耦合不稳定系统的影响[J]. 机械工程学报, 2017, 53 (5): 116-127.
LI Xiaopeng, PAN Wujiu, GAO Jianzhuo. Influence of surface topography characteristics on mode coupling instability system [J]. Journal of Mechanical Engineering, 2017, 53 (5): 116-127.
[8] Greenwood J A, Williamson J B P. Contact of nominally flat surfaces [J]. Proceedings of the Royal Society of London, Series A, 1966, 295: 300-319.
[9] Chang W R, Etsion I, Bogy D B. An elastic-plastic model for the contact of rough surfaces [J]. ASME Journal of Tribology, 1987, 109: 257-263.
[10] Yan W, Komvopoulos K. Contact analysis of elastic–plastic fractal surfaces [J]. Journal of Applied Physics, 1998, 84: 3617-3624.
[11] Zhao Y W, Maietta D M, Chang L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow [J]. Journal of Tribology, 2000, 122:86-93.
[12] Jiang S Y, Zheng Y J, Zhu H. A contact stiffness model of machined plane joint based on fractal theory [J]. ASME Journal of Tribology, 2010, 132: 011401.
[13] 王世军, 赵金娟, 张慧军, 等.一种结合部法向刚度的预估方法[J].机械工程学报, 2011, 47(21): 111-122.
[14] Wang Shijun, Zhao Jinjuan, Zhang Huijun, et al. A method of estimating normal stiffness of joint. Journal of Mechanical Engineering, 2011, 47(21): 111-122.
[15] Buczkowski R, Kleiber M, Starzynski G. Normal contact stiffness of fractal rough surfaces [J]. Archives of Mechanics, 2014, 66: 411-428.
[16] 王雯, 吴洁蓓, 傅卫平,等.机械结合面法向动态接触刚度理论模型与试验研究[J].机械工程学报, 2016,52 (13): 123-129.
WANG Wen, WU Jiebei, FU Weiping, et al. Theoretical and experimental research on normal dynamic contact stiffness of machined joint surfaces [J]. Journal of Mechanical Engineering, 2016, 52 (13): 123-129.
[17] Xiao H F, Shao Y M, Brennan M J. On the contact stiffness and nonlinear vibration of an elastic body with a rough surface in contact with a rigid flat surface [J]. European Journal of Mechanics - A/Solids, 2015, 49: 321-328.
[18] 田红亮,刘芙蓉,方子帆等.引入各向同性虚拟材料的固定结合部模型[J]. 振动工程学报, 2013,26(4): 561-573.
TIAN Hongliang, LIU Furong, FANG Zifan, et al. Immovable joint surface’s model using isotropic virtual material[J]. Journal of Vibration Engineering, 2013, 26(4):561-573.
[19] 李小彭, 梁亚敏, 郭浩等.结合面广义间隙的等效模型研究[J]. 振动工程学报, 2014,27(1): 25-32.
LI Xiaopeng, LIANG Yamin, GUO Hao, et al. Study on equivalent model of generalized clearance of joint surface[J]. Journal of Vibration Engineering, 2014, 27(1): 25-32.
[20] Shi X, Polycarpou A A. Measurement and modeling of normal contact stiffness and contact damping at the meso scale [J]. ASME Journal of Vibration and Acoustics, 2005, 127,52-60.
[21] Gonzales-Valadez M, Dwyer-Joyce R S, Lewis R. Ultrasonic reflection from mixed liquid-solid contacts and the determination of interface stiffness [J]. Tribology and Interface Engineering Series, 2005, 48:313-320.
[22] Mulvihill D M, Brunskill H, Kartal M E, et al. A comparison of contact stiffness measurements obtained by the digital image correlation and ultrasound techniques [J]. Experimental Mechanics, 2013, 53(7): 1245-1263.
[23] Johnson K L, Greenwood J A, Poon S Y. A simple theory of asperity contact in elastohydrodynamic lubrication [J]. Wear, 1972, 19, 91-108.
[24] Sojoudi H, Khonsari M M. On the modeling of quasi-steady and unsteady dynamic friction in sliding lubricated line contact [J]. Journal of Tribology, 2010, 132,012101.
[25] Johnson K L. Contact Mechanics [M]. Cambridge: Cambridge University Press, 1985.
[26] Krautkramer J, Krautkramer H. Ultrasonic testing of materials [M]. Springer Science and Business Media, 2013.
[27] Tattersall H G. The ultrasonic pulse-echo technique as applied to adhesion testing [J]. Journal of Physics D: Applied Physics, 1973, 6(7): 819-832.
[28] Gonzalez-Valadeza M, Baltazarb A, Dwyer-Joyce R S. Study of interfacial stiffness ratio of a rough surface in contact using a spring model [J]. Wear, 2010, 268: 373-379.
[29] LU X B, Khonsari M M, Gelinck E R M. The Stribeck curve: experimental results and theoretical prediction [J]. ASME Journal of Tribology, 2006, 128: 789-794.

PDF(2035 KB)

Accesses

Citation

Detail

段落导航
相关文章

/