自动平衡作为新兴的动平衡技术,可实现在线振动抑制。针对非稳态过程提出一种基于自适应粒子群优化(APSO)的自动平衡控制算法,结合BP神经网络,实现一次启停机跟踪后系统的自动平衡控制,在变速模拟试验台上进行了验证。该算法以启停机过程中配重块的调整参数及工作转速作为神经网络的输入,以系统残余振动值作为网络输出,建立输入输出量间的神经网络。将网络培训后输出残余振动预测值作为目标函数,采用粒子群优化对目标函数值最小时的配重块的调整参数进行寻优。仿真及实验结果表明,APSO-BP方法在稳态与非稳态状态下皆可完成系统的自动配平,该控制策略在悬臂试验台上进行测试:变速过程中,不平衡振动幅值在14秒内下降约75%。
Abstract
As a new dynamic balancing technology, autobalancing can achieve online vibration suppression.An autobalancing control strategy based on APSO was proposed,which combined with BP neural network to achieve the autobalancing of the system by one startup and shutdown.In the process of startup and shutdown procedure, the algorithm takes the parameters of the balance block and the working speed as the neural network input.The residual vibration value of the system was used as the output.The residual vibration prediction value of the network was used as the objective function.This algorithm was used to optimize the parameters of the balance block when the objective function value reaches minimum.Simulation and experimental results shown that, the APSO-BP method can complete the balancing automatically in the steady and unsteady state.The experiment shows that, during the variable speed process, the amplitude of unbalance vibration assignment dropped by about 75% in 14 seconds.
关键词
非稳态动平衡 /
自动平衡 /
粒子群算法 /
BP神经网络
{{custom_keyword}} /
Key words
Nonstationary Autobalancing /
Autobalancing /
Particle Swarm Optimization /
BP neural network
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Justin Manna. Overcoming Propeller Imbalance[J]. Aircraft Maintenance Technology.2014,257017(1):6-10.
[2] 周卫华. 基于自适应影响系数控制算法的转子自动平衡研究[D]. 北京化工大学, 2005.
Zhou Weihua.Parameter Auto-tuning adapitive active balancing for rotating machinery[D].Beijin Univesity of Chemical Technology,2005.
[3] 熊四昌, 金振峰, 孙建辉. 在线动平衡调节器的改进快速寻优策略[J]. 浙江大学学报:工学版, 2008, 42(8):1415-1418.
Xiong Sichang,Jin Zhenfeng,Sun Jianhun. Improved fast optimization strategy for online balancing adjustor[J]. Journal of ZhejiangUniversity:Engineering Science,2008,42(8):1415-1418.
[4] 岳聪, 任兴民, 邓旺群,等. 基于升速响应信息柔性转子系统的多阶多平面瞬态动平衡方法[J]. 航空动力学报, 2013, 28(11):2593-2599.
Yue Cong,Ren Xinmin, Deng Wangqun, et al. Multi-plane and multi-critical transient dynamic balance method based on rising speed response information of flexible rotor system[J]. Journal of Aerospace Power, 2013, 28(11):2593-2599.
[5] 陈璞. 转子的瞬态平衡[D]. 西北工业大学, 1998.
Chen Pu. Transient balance of the rotor[D].Journal of Northwestern Polytechnical University,1998.
[6] 陈立芳, 吴海琦, 王维民,等. 双配重平衡头无错调控制算法研究[J]. 北京化工大学学报(自然科学版), 2012, 39(2):89-94.
Chen Lifang,Wu Haiqi,Wang Weimin, et al. Research on Error - free Control Algorithm for Double Counterweight Balance Head[J].Journal of Beijing University of Chemical Technology(Natural Science Edition) , 2012, 39(2):89-94.
[7] 黄丽. BP神经网络算法改进及应用研究[D]. 重庆师范大学, 2008.
Huang Li. BP Neural Network Algorithm Improvement and Application Research[D], Journal of ChongQing Normal University,2008.
[8] 吴燕翔, 李晓斌, 孙海燕. 基于APSO算法的参数辨识与优化[J]. 科学技术与工程, 2008, 8(14):3777-3782.
Wu Yanxiang, Li Xiaobin, Sun Haiyan. Parameter Identification and Optimization Based on APSO Algorithm[J]. ScienceTechnology and Engineering, 2008, 8(14):3777-3782.
[9] 范雷雷. 转子系统不平衡响应传递规律研究[D]. 东南大学, 2005.
Fan Leilei. Research on Transfer Behaviour Of Unbalance Response In Rotor System[D]. Journal of Southeast University,2005.
[10] 刘东. 粒子群优化算法及其工程应用研究[D]. 西南交通大学, 2013.
Liu Dong. Research On Particle Swarm Optimization And Its Engineering Application[D].Journal of Southwest Jiaotong University,2013.
[11] Huang W, Wang J, Xie W, et al. Brushless DC Motor Velocity Adjustment Research based on Improved Particle Swarm Optimization Algorithm[J]. Modern Manufacturing Technology & Equipment, 2016.
[12] Gupta M, Sindhu A. Dynamic Voltage Restorer Based on Neural Network and Particle Swarm Optimization for Voltage Mitigation[M].Information Systems Design and Intelligent Applications. Springer India, 2016.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}