流线型箱梁断面的自激气动力与振幅非线性相关。为更加准确地预测颤振临界风速,同时探索大振幅振动下的颤振后状态,建立数值风洞模型识别出随折算风速与振幅变化的气动自激力,并计算出相应的非线性颤振导数。在经典的颤振理论基础上,提出更加精细的考虑颤振幅值因素的二自由度复模态特征值求解方法。基于此方法,编制了非线性颤振幅值幅响应搜索程序,并对颤振后幅值特性进行研究。研究表明:单频单自由度振动下,随着幅值增大,桥梁断面气动力非线性成分比重扩大,单频单一扭转运动下尤其明显。所建立的颤振求解方法能准确预测颤振临界风速。流线型箱梁发生颤振后,振幅会出现阶跃性增长,达到某一大幅值后,又基本处于振幅缓增的振动状态。
Abstract
The self-excited aerodynamic force of the streamlined box girder cross section is related to the amplitude nonlinearly.In order to predict the flutter critical wind speed accurately and then explore the post flutter state with the large amplitude vibration, self-excited aerodynamic forces varying with converted wind speeds and amplitudes were identificated based on the established numerical tunnel wind model.Then the corresponding nonlinear flutter derivatives were calculated.On the basis of the classical flutter theory, a finer complex modal eigenvalues solution method of two degrees of freedom, considering the factors of flutter amplitudes, was proposed.Based on this method, a program for searching the nonlinear flutter amplitude response was developed, and the amplitude characteristics after flutter were investigated.The results show that under the single frequency vibration of single degree of freedom, the proportion of aerodynamic nonlinear components increases with the amplitude of bridge section, especially the single twist.The flutter analysis method developed in this paper can accurately predict the flutter critical wind speed.After flutter, vibration amplitude will appear a step growth.When achieving a substantial value, the amplitude will be in the vibration state of increasing slowly.
关键词
流线型箱梁 /
非线性颤振导数 /
颤振求解 /
颤振后状态
{{custom_keyword}} /
Key words
streamlined box girder /
nonlinear derivatives /
flutter analysis /
post flutter state
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 葛耀君, 项海帆. 大跨度桥梁气动稳定性数值计算模型与方法[J]. 土木工程学报, 2008, 41(2):86-93.
GE Yaojun, XIANG Haifan. Computational models and methods for the aerodynamic stability of long-span bridges[J]. China Civil Engineering Journal, 2008, 41(2):86-93.
[2] Scanlan R H, Tomko J J. Airfoil and bridge deck flutter derivatives[J]. Journal of Engineering Mechanics, 1971, 97(6):1717-1737.
[3] 陈政清. 桥梁风工程[M]. 北京:人民交通出版社, 2005.
CHEN Zhengqing. Wind engineering of bridge[M]. Beijing: China Communications Press, 2005:67-73.
[4] 项海帆, 葛耀君. 悬索桥跨径的空气动力极限[J]. 土木工程学报, 2005, 38(1):60-70.
XIANG Haifan, GE Yaojun. On aerodynamic limits to suspension bridges[J]. China Civil Engineering Journal, 2005, 38(1):60-70.
[5] 项海帆, 葛耀君. 大跨度桥梁抗风技术挑战与基础研究[J]. 中国工程科学, 2011, 13(9):8-21.
XIANG Haifan, GE Yaojun. Wind resistance challenges and fundamental research on long span bridges[J]. Engineering Sciences, 2011, 13(9):8-21.
[6] 葛耀君. 大跨度桥梁抗风的技术挑战与精细化研究[J]. 工程力学, 2011(a02):11-23.
GE Yaojun. Technical challenges and refinement research on wind resistance of long-span bridges[J].Engineering Mechanics, 2011(a02):11-23.
[7] Wilde K, Fujino Y, Masukawa J. Time domain modeling of brige deck flutter [J]. Structural Engineering Earthquake Engineering, 1996, 13(2):93-104.
[8] 葛耀君. 大跨度悬索抗风[M]. 北京:人民交通出版社,2011.
GE Yaojun. Long-span suspension cable wind resistance[M]. Beijing: China Communications Press, 2011.
[9] 朱乐东, 高广中. 典型桥梁断面软颤振现象及影响因素[J]. 同济大学学报, 2015, 43(9):1289-1294.
ZHU Ledong, GAO Guangzhong. Influential factors of futter phenomenon for typical bridge deck sections[J]. Journal of Tongji University, 2015, 43(9):1289-1294.
[10] 徐旭, 曹志远. 柔长结构气固耦合的线性与非线性气动力理论[J]. 应用数学和力学, 2001, 22(12):1299-1308.
XU Xu, CAO Zhiyuan. Linear and nonlinear aerodynamic theory of interaction between flexible long structure and wind[J]. Applied Mathematics and Mechanics, 2001, 22(12):1299-1308.
[11] 张朝贵. 桥梁主梁“软”颤振及其非线性自激气动力参数识别[D]. 上海:同济大学, 2007.
ZHANG Chaogui. Soft flutter and parameters identification of nonlinear self-excited aerodynamic force of bridge girders[D]. Shanghai: Tongji University, 2007.
[12] 王骑, 廖海黎, 李明水,等. 大跨度桥梁颤振后状态气动稳定性[J]. 西南交通大学学报, 2013, 48(6):983-988.
WANG Qi, LIAO Haili, LI Mingshui, et al. Aerodynamic stability of long-span bridges in post flutter[J].Journal of Southwest Jiaotong University, 2013, 48(6):983-988.
[13] 朱乐东, 高广中. 双边肋桥梁断面软颤振非线性自激力模型[J]. 振动与冲击, 2016, 35(21):29-35.
ZHU Ledong, GAO guangzhong. A nonlinear self-excited force model for soft flutter phenomenon of a twin-side-girder bridge section[J]. Journal of Vibration and Shock, 2016, 35(21):29-35.
[14] 张彦. 桥梁气动自激力的数值模拟研究[D]. 成都:西南交通大学, 2009.
ZHANG Yan. A numerical study on self-excited aerodynamic forces of bridge deck[D]. Chengdu: Southwest Jiaotong University, 2009.
[15] 王骑, 廖海黎, 李明水,等. 桥梁断面非线性自激气动力经验模型[J]. 西南交通大学学报, 2013, 48(2):271-277.
Wang Qi, LIAO Haili, LI Mingshui, et al. Empirical mathematical model for nonlinear motion-induced aerodynamic force of bridge girder[J]. Journal of Southwest Jiaotong University, 2013, 48(2):271-277.
[16] 唐煜. 流线型箱梁断面非线性自激力与非线性颤振响应研究[D]. 成都:西南交通大学, 2015.
TANG Yu. Nonlinear self-excited forces of streamlined box deck and nonlinear flutter response[D]. Chengdu: Southwest Jiaotong University, 2015.
[17] 陈政清, 于向东. 大跨桥梁颤振自激力的强迫振动法研究[J]. 土木工程学报, 2002, 35(5):34-41.
CHEN Zhenqing, Yu Xiangdong. A new method for measuring flutter self-excited forces of long-span bridges[J]. China Civil Engineering Journal, 2002, 35(5):34-41.
[18] 庞伟. 基于FLUENT软件的大跨度桥梁颤振导数识别[D]. 成都:西南交通大学, 2007.
PANG Wei. The identification of flutter derivatives for long-span bridges based on FLUENT[D]. Chengdu: Southwest Jiaotong University, 2007.
[19] 高伟. 斜风作用下大跨度桥梁颤振导数研究[D]. 成都:西南交通大学, 2013.
GAO Wei. Flutter derivatives research of large span bridges under skew wind[D]. Chengdu: Southwest Jiaotong University, 2013
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}