本文以一类静电驱动双侧平行板电容型微谐振器为研究对象,基于分岔理论研究微结构的复杂动力学行为的机制。通过分析微结构动力系统的静态分岔,发现直流偏置电压的增大会直接引起微结构的静态吸合。在此基础上获得系统的多稳态解的解析形式,解析预测与数值结果吻合,研究发现系统的振动跳跃来源于双平衡点失稳引起的多稳态现象。进而发现继续驱动交流电压幅值的增大则会引起微结构的混沌和吸合不稳定现象。该结果对静电驱动微谐振器的设计中如何避免出现复杂响应具有实际意义。
Abstract
A class of micro mechanical resonator with electrostatic forces on both sides was considered whose complex dynamical behaviors were studied by the theories of bifurcations.It followed from the static bifurcation of the dynamical system that the increase of bias DC voltage would induce the static pull in of the microstructure.Basing on it, the obtained theoretical multiple periodic solutions were in agreement of the numerical results, which show that the safe jump phenomenon meant the multiple periodic solutions that caused by the losing stability of the two equilibriums.In addition, it was found that the increase of AC voltage would lead to the chaotic motion and pull-in instability.The investigation above may be helpful for preventing the complex dynamics, which can be applied to design the electrostatic micro resonators.
关键词
微谐振器 /
多稳态现象 /
吸合不稳定 /
混沌
{{custom_keyword}} /
Key words
Micro resonator /
Multi-stability /
pull-in instability /
chaos
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] YOUNISounis, M .I.. MEMS Linear and Nonlinear Statics and Dynamics [M]. Springer, New York, 2011.
[2] ALSALEEMlsaleem F. M., YOUNISYounis M I.. Integrity Analysis of Electrically Actuated Resonators With Delayed Feedback Controller [J]. Journal of Dynamic Systems Measurement and Control, 2011, 133(3): 031011.
[3] RUZZICONIuzziconi L,. YOUNISYounis M I., LENCIenci S.. An imperfect microbeam electrically actuated: dynamical integrity for interpreting and predicting the experimental response [J]. Meccanica, 2013, 48(7): 1761-1775.
[4] RUZZICONI LRuzziconi L,. BATAINEHataineh A M., YOUNIS M IYounis I. M., et al. Nonlinear Dynamics of an electrically actuated imperfect microbeam resonator: experimental investigation and reduced-order modeling [J]. Journal of Micromechanics and Microengineering, 2013, 23(7): 075012.
[5] Zhang ZHANG W .M., MENGeng G, WEIei K. X.. Dynamics of nonlinear coupled electrostatic micromechanical resonators under two-frequency parametric and external excitations [J]. Shock and Vibration, 2010, 17(6): 759-770.
[6] LUOuo A .C. J, WANGang F. Y.. Chaotic motion in a micro-electro-mechanical system with non-linearity from capacitors [J]. Communications in Nonlinear Science and Numerical Simulation, 2002, 7(1-2): 31-49.
[7] CHAVARETTEhavarette F .R., BALTHAZARalthazar J M., FELIXelix J. L. P., et al. A reducing of a chaotic movement to a periodic orbit,of a micro-electro-mechanical system,by using an optimal linear control design [J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5): 1844-1853.
[8] SIEWEiewe M. S., HEGAZYegazy U H.. Homoclinic bifurcation and chaos control in MEMS resonators [J]. Applied Mathematical Modelling, 2011, 35(12): 5533-5552.
[9] HAGHIGHIaghighi H. S., MARKAZIarkazi A H. D.. Chaos prediction and control in MEMS resonators [J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(10): 3091-3099.
[10] ZHANGhang, W .M.,YANan, H, et al. Electrostatic pull-in instability in MEMS/NEMS: A review [J]. Sensors and Actuators A: Physical, 2014, 214(4): 187-218.
[11] LENCIenci S, .REGAega G. Control of pull-in dynamics in a nonlinear thermoelastic electrically actuated microbeam [J]. Journal of Micromechanics and Microengineering, 2006, 16(2): 390-401.
[12] SHANGhang H.. Pull-in instability of a typical electrostatic MEMS resonator and its control by delayed feedback [J]. Nonlinear Dynamics, 2017, 90(1): 171-183.
[13] SHAOhao S,. MASRIasri K M., YOUNIS M IYounis M. I.. The effect of time-delayed feedback controller on an electrically actuated resonator [J]. Nonlinear Dynamics, 2013, 74(1-2): 257-270.
[14] 尚慧琳,宋书峰,文永蓬.时滞位置反馈对一类静电微传感器的吸合不稳定的控制研究[J].振动与冲击, 2016, 35(4):81-86.
SHANGhang Hui-lin, SONGong Shu-feng, WENen Yong-peng. Controlling pull-in instability of a typical electrostatically actuated micro sensor with time-delay position feedback [J]. Journal of Vibration and Shock, 2016, 35(4): 81-86.
[15] SHANGhang H, .WENen Y. Suppression of chaos in a MEMS resonator by delayed position feedback [J]. Theoretical and Applied Mechanics Letters, 2013, 3(6): 063008.
[16] SONGong Z, SUNun K.. Nonlinear and chaos control of a micro-electro-mechanical system by using second-order fast terminal sliding mode control [J]. Communications in Nonlinear Science and Numerical Simulation, 2013, , 18(9): 2540-2548.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}