基于结构分析的风机齿轮箱传感器配置研究

王桂兰1,赵洪山1,郭双伟2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (24) : 181-188.

PDF(1443 KB)
PDF(1443 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (24) : 181-188.
论文

基于结构分析的风机齿轮箱传感器配置研究

  • 王桂兰1,赵洪山1,郭双伟2
作者信息 +

Structural analysis based sensor placement of a wind turbine gearbox

  • WANG Guilan1,ZHAO Hongshan1,GUO Shuangwei2
Author information +
文章历史 +

摘要

齿轮箱是风电机组传动系统的核心部分,一旦齿轮箱发生故障,不仅会产生高额的维修费用,还会造成较长时间的停电。因此,对风机齿轮箱进行实时状态监测与故障的识别、隔离具有重要的实际意义。而齿轮箱状态监测与故障识别、隔离的有效性依赖于齿轮箱中传感器所安装的位置和数量,因而有必要对齿轮箱传感器的配置进行研究。为了使安装的传感器不但可以准确反映齿轮箱的运行状态,还能对可能出现的故障实现识别与隔离,提出从风机齿轮箱的动力学模型出发,构建描述齿轮箱运行状态的动力学方程,将结构分析方法应用到齿轮箱传感器的优化配置中;实现传感器数量最少,识别、隔离可能出现的故障能力最大的配置目标。

Abstract

A gearbox is a premier part of the drive train in the wind turbine.Once the gearbox has fault, it will not only produce high maintenance cost but also result in longer power outages.Performing on-line condition monitoring and the early fault detection and isolability of the gearbox thus has important practical significance for the assessment of wind turbine health.However, the effectiveness of the on-line condition monitoring and the early fault warning mainly depends on the installation location and number of sensors in the gearbox.Therefore, it is necessary to study the sensor configure of the gearbox.To accurately reflect the operational status of the gearbox and detect and insulate the fault that may arise, a dynamic equation describing the gearbox behavior was built.The structural analysis method was applied to optimize the allocation of the gearbox sensor, achieve the optimization goals of maximum fault detection and isolation.

关键词

风机齿轮箱 / 传感器配置 / 结构分析 / 故障识别与隔离

Key words

turbine gearbox / sensor placement / structural analysis;fault detection and isolability

引用本文

导出引用
王桂兰1,赵洪山1,郭双伟2. 基于结构分析的风机齿轮箱传感器配置研究[J]. 振动与冲击, 2018, 37(24): 181-188
WANG Guilan1,ZHAO Hongshan1,GUO Shuangwei2 . Structural analysis based sensor placement of a wind turbine gearbox[J]. Journal of Vibration and Shock, 2018, 37(24): 181-188

参考文献

[1] Sheng S,Veers P. Wind turbine drivetrain condition monitoring-an overview[C]. Machinery Failure Prevention Technology (MFPT): The Applied Systems Health Management Conference 2011. Virginia Beach, USA,2011.
[2] 丁显. 基于振动和载荷监测的风力发电机组失效分析[D]. 华北电力大学, 2012.
[3] 杜稳稳. 风力发电机组振动状态监测与故障诊断[D].华东理工大学,2011.
[4] Krysander M,Frisk E. Sensor placement for fault diagnosis[J]. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 2008, 38(6): 1398-1410.
[5] Frisk E, Krysander M. Sensor placement for maximum fault isolability[C]. 18th International Workshop on Principles of Diagnosis (DX-07). 2007: 106-113.
[6] Abid S, HAFFAF H. Optimal sensors placement for failures detection and isolation[C]. Proceedings of the Third international conference on Verification and Evaluation of Computer and Communication Systems. British Computer Society, 2009: 1-10.
[7] Sarrate R, Puig V, Escobet T, et al. Optimal sensor placement for model-based fault detection and isolation[C]//Decision and Control, 2007 46th IEEE Conference on. IEEE, 2007: 2584-2589.
[8] Gwendolyn W,Linden V D,Abbas E N, et al.Optimal sensor placement for health monitoring of civil structures[C]. American Control Conference on O’Farrel Street,San Francisco,USA,2011.
[9] T Knüppel,M Blanke,J Østergaard. Fault diagnosis for electrical distribution systems using structural analysis[J]. International Journal of Robust & Nonlinear Control, 2014, 24(8-9):1446–1465
[10] Mattias Krysander. Design and Analysis of Diagnosis Systems Using Structural Methods[M]. Sweden, Link ping: Linkopings Universitet, 2006.
[11] Seokbae Moon, Jewon Lee, Hyeyun Jeong, and Sang Woo Kim. Demagnetization Fault Diagnosis of a PMSM Based on Structure Analysis of Motor Inductance. IEEE Transactions on Industrial Electronics[J], 2016, 63(6):3795-3803.
[12] Jiyu Zhang, Hongyang Yao, Giorgio Rizzoni. Fault Diagnosis for Electric Drive Systems ofElectrified Vehicles Based on Structural Analysis. IEEE Transactions on Vehicular Technology [J], 2016, 1-1.
[13] Yi Guo, Robert G.P.. Dynamic modeling and analysis of a planetary gear involving tooth wedging and bearing clearance nonlinearity, in Proceedings of 2009 ASME, Galifornia, USA, 2009.
[14] 张策. 机械动力学[M]. 北京:高等教育出版社.2007:324-439.
[15] Morten H., Michael R.H., Morten K.E.. Modeling of wind turbine gearbox mounting[J]. Modeling, Identification and control, 2011, 32(4):141-149.
[16] Datong Qin, Feixiong Tang, Study on dynamic characteristics of gear transmission system of wind turbine[C]. In 13th World congress in Mechanism and Machine science, Guanajuato, Mexico, 2011.
[17] Qin D,Feixiong F .Study on Dynamic Characteristics of Gear Transmission System of Wind Turbine [C].13th World Congress in Mechanism and Machine Science,Guannjuato,Mexico,2011.
[18] 杨晓宇.齿轮传动系统动力学特性的有限元分析及试验方法研究.[D]北京:中国科学院研究生院, 2005.
[19]Shawki A.Abouel-seoud, Eid S. Mohamed. (Abouel-Seoud, SA1; Dyab, ES2) Wind turbine planetry gearbox health diagnostic using varying-time meshing stiffness variation. International journal of modern engineering research, 2012, 2(3):1440-1448.
[20]安春雷,韩振南. 点蚀与剥落对齿轮扭转啮合刚度影响的分析[J].振动、测试与诊断, 2008, 28(4):354-357.
An Chunlei, Han Zhennan. Analysis of the Influence of Pitting and Spalling on Torsional Mesh Stiffness of Gears[J]. Journal of Vibration,Measurement & Diagnosis, 2008, 28(4):354-357.
[21]张建宇,刘鑫博,张飞斌. 裂纹齿轮啮合刚度的劣化特性[J]. 振动、测试与诊断, 2014, 34(6):1124-1128.
Zhang Jianyu, Liu Xinbo, Zhang Feibin. Degradation Characteristics of Meshing Stiffness of Spur Gears with Root Crack[J], Journal of Vibration,Measurement & Diagnosis, 2014, 34(6):1124-1128.
[22] Blanke M,Schroder J.Diagnosis and fault-tolerant control [M].Berlin:Springer,2006:35-68.
[23] 王秋生,樊久铭,徐敏强,邹经湘,等.基于解析冗余关系的动态系统故障检测和隔离 [J].哈尔滨工业大学学报,2007,39(6):924-927.
WANG Qiu-sheng, FAN Jiu-ming, XU Min-qiang, ZOU Jing-xiang. Dynamic system fault detection and isolation with analytical redundancy relations[J]. JOURNAL OF HARBIN INSTITUTE OF TECHNOLOGY, 2007,39(6):924-927.
[24] A.L. Dulmage and N.S. Mendelsohn. Coverings of bipartite graphs[J]. Canadian Journal of  Mathematics, 1958(10):517-534.
[25] Teng W, Wang F, Zhang K, et al. Pitting Fault Detection of a Wind Turbine Gearbox Using Empirical Mode Decomposition[J]. Strojniski Vestnik, 2014, 60(1):12-20.

PDF(1443 KB)

342

Accesses

0

Citation

Detail

段落导航
相关文章

/