一种基于UPF的轴承剩余寿命预测方法

文娟,高宏力

振动与冲击 ›› 2018, Vol. 37 ›› Issue (24) : 208-213.

PDF(1360 KB)
PDF(1360 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (24) : 208-213.
论文

一种基于UPF的轴承剩余寿命预测方法

  • 文娟 ,高宏力
作者信息 +

Remaining useful life prediction of bearings with the unscented particle filter approach

  • WEN Juan, GAO Hongli
Author information +
文章历史 +

摘要

剩余寿命预测能够确保系统的安全性、可用性与高效工作,并且能够降低维修费用,因而成为状态维修中的一个重要课题。基于模型的寿命预测方法主要包含两部分内容:退化模型构建和系统状态估计。粒子滤波算法(Particle filtering, PF)是一种广泛用于系统状态估计的方法,已经应用于轴承剩余寿命预测中,但PF方法存在粒子退化问题。本文提出一种基于无迹粒子滤波算法(Unscented Particle filter, UPF)的轴承剩余寿命预测方法。首先,利用随机过程模型对轴承退化过程进行建模,然后利用UPF算法对轴承的退化状态进行追踪,并更新模型参数。使用实验数据对提出方法进行验证,结果表明:与PF方法相比,本文提出的方法能在一定程度上降低粒子退化程度,进而更加准确地预测轴承剩余寿命。

Abstract

As a critical issue of condition-based maintenance, accurate prognosis of systems can improve the safety, availability and efficiency as well as reducing the maintenance cost.There are two main parts in model-based prognosis methods: degradation modelling and state estimation.Recently, particle filter (PF) has been widely applied in this area.However, there is a particle degeneracy problem with using PF.A remaining useful life (RUL) prediction approach of bearings was introduced by combining a stochastic process model and unscented particle filter (UPF) in this paper.Specifically, the degradation process of bearings was described with the stochastic process model, and the health state and model parameters were updated with UPF.Real test data were involved to demonstrate the effectiveness of the proposed technique.Compared with PF, the proposed method shows its superiority in particle degeneracy problem reduction and bearing RUL prediction.

关键词

状态维修 / 无迹粒子滤波 / 轴承 / 剩余寿命预测 / 随机过程模型

Key words

condition-based maintenance / Unscented Particle filter / bearing / remaining useful life prediction / stochastic process model

引用本文

导出引用
文娟,高宏力. 一种基于UPF的轴承剩余寿命预测方法[J]. 振动与冲击, 2018, 37(24): 208-213
WEN Juan, GAO Hongli. Remaining useful life prediction of bearings with the unscented particle filter approach[J]. Journal of Vibration and Shock, 2018, 37(24): 208-213

参考文献

[1] FENG Z and ZUO M J. Vibration signal models for fault diagnosis of planetary gearboxes[J]. Journal of Sound and Vibration. 2012,331(22):4919-4939
[2] LEI Y G, LI N P, GONTARZ S, et al. A Model-Based Method for Remaining Useful Life Prediction of Machinery[J]. Ieee Transactions on Reliability. 2016,65(3):1314-1326
[3] LIANG X, ZUO M J, and HOSEINI M R. Vibration signal modeling of a planetary gear set for tooth crack detection[J]. Engineering Failure Analysis. 2015,48:185-200
[4] TIAN Z, WONG L, and SAFAEI N. A neural network approach for remaining useful life prediction utilizing both failure and suspension histories[J]. Mechanical Systems and Signal Processing. 2010,24(5):1542-1555
[5] TRAN V T, THOM PHAM H, YANG B-S, et al. Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine[J]. Mechanical Systems and Signal Processing. 2012,32:320-330
[6] GEBRAEEL N Z, LAWLEY M A, LI R, et al. Residual-life distributions from component degradation signals: A Bayesian approach[J]. IiE Transactions. 2005,37(6):543-557
[7] SI X-S. An adaptive prognostic approach via nonlinear degradation modeling: application to battery data[J]. IEEE Transactions on Industrial Electronics. 2015,62(8):5082-5096
[8] WANG Y, PENG Y, ZI Y, et al. A Two-Stage Data-Driven-Based Prognostic Approach for Bearing Degradation Problem[J]. Ieee Transactions on Industrial Informatics. 2016,12(3):924-932
[9] SINGLETON R K, II, STRANGAS E G, and AVIYENTE S. Extended Kalman Filtering for Remaining-Useful-Life Estimation of Bearings[J]. Ieee Transactions on Industrial Electronics. 2015,62(3):1781-1790
[10] LI N P, LEI Y G, LIN J, et al. An Improved Exponential Model for Predicting Remaining Useful Life of Rolling Element Bearings[J]. Ieee Transactions on Industrial Electronics. 2015,62(12):7762-7773
[11] ORCHARD M E and VACHTSEVANOS G J. A particle filtering approach for on-line failure prognosis in a planetary carrier plate[J]. International Journal of Fuzzy Logic and Intelligent Systems. 2007,7(4):221-227
[12] YAGUO L, NAIPENG L, and JING L. A new method based on stochastic process models for machine remaining useful life prediction[J]. IEEE Transactions on Instrumentation and Measurement. 2016,65(12):2671-2684
[13] VAN DER MERWE R, DOUCET A, DE FREITAS N, et al. The unscented particle filter[C]. NIPS, 2000:584-590
[14] AN D, CHOI J-H, and KIM N H. Prognostics 101: A tutorial for particle filter-based prognostics algorithm using Matlab[J]. Reliability Engineering & System Safety. 2013,115:161-169
[15] SMITH W A and RANDALL R B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study[J]. Mechanical Systems and Signal Processing. 2015,64-65:100-131
[16] NECTOUX P, GOURIVEAU R, MEDJAHER K, et al. PRONOSTIA: An experimental platform for bearings accelerated degradation tests[C]. IEEE International Conference on Prognostics and Health Management, PHM'12., IEEE Catalog Number: CPF12PHM-CDR,2012:1-8
[17] ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. Ieee Transactions on Signal Processing. 2002,50(2):174-188
 

PDF(1360 KB)

Accesses

Citation

Detail

段落导航
相关文章

/