高面型精度和高表面质量的硅片表面加工是目前研究的难点和热点问题之一,本文基于超声加工所具有的加工效率和加工表面质量高的特性,以及固结磨粒的加工质量易控制和对环境污染小的特点,开展超声椭圆振动辅助固结磨粒抛光硅片的材料去除、抛光表面面型精度及粗糙度的加工机理及实验研究。研究认为抛光工具运动轨迹是影响上述问题的主要因素,为此在对抛光实验系统描述基础上,首先分析并建立了抛光工具运动轨迹及轨迹密度模型,进而完成硅片材料去除,抛光表面形貌和表面粗糙度的建模仿真。然后,开展相应的实验研究,发现理论分析与实验的结果相一致,基于抛光工具运动轨迹建模的可行性。本研究方法和得出结论为今后开展固结磨粒抛光硅片表面实验的工艺参数的选择和优化,提供了可供借鉴的研究成果,为实际生产提供了可供参考的理论依据。
Abstract
Based on the high efficiency and surface quality of ultrasonic machining characteristics, and combined with high effectively controlling and little pollution features of fixed abrasive polishing, this work is to explore the process mechanism of the ultrasonic elliptic vibration assisted fixed abrasive chemical mechanical polishing (CMP) technique on material removal, super smooth surface and surface roughness of silicon wafer.It is considered that the path of polishing tool is the main factor to influence the material removal and surface polishing quality.Therefore, according to the experimental system, a mathematical model of polishing tool path and path density was proposed, and then the simulation models of materials removal, surface morphology and surface roughness were built.Furthermore, the experiment was launched.The present study could provide fruitful suggestion for selecting process parameters of fixed abrasive CMP technique for silicon wafer, and theoretical basis for industrial application and future experimental studies.
关键词
超声振动 /
固结磨粒 /
抛光轨迹 /
加工机理
{{custom_keyword}} /
Key words
ultrasonic vibration /
fixed abrasive /
polishing tool path /
processing mechanism
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 吴明明,周兆忠,巫少龙.单晶硅片的制造技术[J].制造技术与机床,2005(3):72-75.
M.M. Wu, Z.Z. Zhou, S.L. Wu. Manufacturing Technique of Monocrystal Silicon Wafers[J].Manufacturing Technology & Machine Tool,2005(3): 72-75.
[2] 郭东明,康仁科,苏建修,等.超大规模集成电路制造中硅片平坦化技术的未来发展[J].机械工程学报,2003,39(10):100-105.
D.M. Guo, R.K. Kang, J.X. Su, et al. Future Development on Wafer Planarization Technology in ULSI Fabrication[J].Chinese Journal of Mechanical Engineering, 2003,39(10):100-105.
[3] L.B. Zhou, T.S. Shiina, Z.J. Qiu, et al. Research on Chemo-Mechanical Grinding of Large Size Quartz Glass Substrate[J].Precision Engineering,2009,33: 499-504.
[4] 王凯,朱永伟,郑方志,等.游离碳化硅磨粒辅助的蓝宝石固结磨料研磨研究[J].人工晶体学报,2015,44(11):2937-2942.
K. Wang, Y.W. Zhu, F.Z. Zheng, et al. Study on the Grinding of Sapphire Using Fixed Abrasive with Free Silicon Carbide Particles[J].Journal of Synthetic Crystals,2015,44(11) :2937- 2942.
[5] Z.J. Pei, G.R. Fisher, J. Liu. Grinding of Silicon Wafers: A Review from Historical Perspectives [J]. International Journal of Machine Tools & Manufacture, 2008,48: 1297-1307.
[6] Y.R. Jeng, P.Y. Huang. A Material Removal Rate Model Considering Interfacial Micro-Contact Wear Behavior for Chemical Mechanical Polishing[J]. Journal of Tribology,2005, 127(1): 190-197.
[7] Y.W. Zhao, L. Chang, S.H. Kim. A Mathematical Model for Chemical Mechanical Polishing Based on Formation and Removal of Weakly Bonded Molecular Species[J]. Wear,2003,254: 332-33.
[8] K. Qin, B. Moudgil, C.W. Park. A Chemical Mechanical Polishing Model Incorporating Both the Chemical and Mechanical Effects[J].Thin Solid Films,2004,446 (2): 277-286.
[9] G. Ahmadi, X. Xia. A Model for Mechanical Wear and Abrasive Particle Adhesion During the Chemical Mechanical Polishing Process[J]. Journal of The Electrochemical Society,2001, 148(3): G99-G109.
[10] P.H. Chen, H.C. Shih, B.W. Huang, et al. Catalytic-Pad Chemical Kinetics Model of CMP[J].Electrochemical and Solid-State Letters,2003, 6(12):G140-G142.
[11] W. Che, Y.J. Guo, A. Chandra, et al. A Scratch Intersection Model of Material Removal During Chemical Mechanical Planarization(CMP)[J].Journal of Manufacturing Science & Engineering,2005, 127 (3): 545-554.
[12] 张建华,田富强,张明路,等.微磨削与超声振动复合加工技术研究现状与展望[J].振动与冲击,2016,38(8):97-109.
J.H. Zhang, F.Q. Tian, M.L. Zhang, et al. Review of Studies on Micro-Grinding and Ultrasonic-Assisted Machining [J].Journal of Vibration and Shock,2016,38(8):97-109.
[13] P. Cuo, K.F. Ehmann. An Analysis of the Surface Generation Mechanics of the Elliptical Vibration Texturing Process[J].International Journal of Machine Tools & Manufacture,2013,64(1): 85–95.
[14] J.G. Cao, Y.B. Wu, D. Lu, et al. Material Removal Behavior in Ultrasonic-Assisted Scratching of SiC Ceramics with a Single Diamond Tool[J].International Journal of Machine Tools & Manufacture,2014,79(4): 49–61.
[15] W.P. Yang, Y.B. Wu, M. Kato. A New Approach to Silicon Wafer Edge Treatment by Ultrasonically Assisted Polishing(UAP).International Journal of Materials and Product Technology,2008,31(2-4),159-175.
[16] 陈扬,陈志刚,李霞章,等.硅晶片化学机械抛光材料去除机制与模型[J].润滑与密封,2006,4:120-126.
Y. Chen, Z.G. Chen, X. Li, et al. Material Removal Mechanism and Model in Chemical Mechanical Polishing of Silicon Wafers[J].Lubrication Engineering,2006,4:120-126.
[17] D.L. Rhode, S.R. Sobolik. Simulation of Subsonic Flow Through a Generic Labyrinth Seal[J].Journal of Engineering for Gas Turbines and Power,1986,108: 674-680.
[18] 廖念钊.互换性与技术测量[M].北京:中国计量出版社,2007.
N.Z. Liao. Interchangeability and Technological Measurement[M].Beijing:China Measurement Press,2007.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}