为探讨桥梁建模相关不确定性对结构地震需求的影响,促进基于性能的桥梁抗震设计方法在实际工程中的应用,以一座4×30m的钢筋混凝土连续梁桥为例,考虑材料(Material Uncertainty, MU)、边界(Boundary Uncertainty, BU)和结构(Structural Uncertainty, SU)三类桥梁建模相关的不确定性,基于OpenSEES程序建立多参数化有限元动力分析模型,输入22条标准化的远场地震波进行非线性时程分析,根据分析结果进行概率条带分析,并基于龙卷风图对各种不确定性进行了敏感性研究。结果表明:随着地震动强度的增加,影响结构地震需求预测的建模不确定性因素越多;建模不确定性对构件响应均值( )和对数标准差( )的影响不完全相同;SU对所有的工程需求参数(Engineering Demand Parameter, EDP)都有较大影响,但BU的影响却因EDP的不同而不同;相比SU和BU不确定性的影响,MU不确定性的影响相对较小。
Abstract
In order to explore the impact of bridge modeling uncertainties on the seismic demand and improve the application of performance-based seismic design of bridges in practical engineering, a reinforced concrete continuous bridge consisting of four 30 m spans was taken as a case study.The OpenSEES software was applied to build a multiple dimension parameterized finite element model considering the uncertainties derived from structural material, boundary and the structure itself.Twenty two standardized far-fault ground motions were used to conduct the nonlinear time-history analysis.Based on the analysis results, the probabilistic stripe analysis method and the tornado diagram were adopted to investigate the sensitivity of various uncertainties.It is concluded that, the number of uncertainty parameters that affect the seismic demand prediction of the bridge is increased with earthquake intensity.The impact of the modeling uncertainties on the mean value (μ) and logarithmic standard deviation (ζ) is not consistent.Structural uncertainties have great impact on all engineering demand parameters, while the impact of the boundary uncertainty is dependent on different engineering demand parameter.Compared to the impact of the structural and boundary uncertainties, the impact of the material uncertainty is relatively less.
关键词
桥梁工程 /
地震需求 /
条带分析 /
建模不确定性 /
敏感性
{{custom_keyword}} /
Key words
bridge engineering /
seismic demand /
stripe analysis /
modeling uncertainty /
sensitivity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Cornell C A and Krawinkler H. Progress and challenges in seismic performance assessment[J]. PEER Center News, 2000, 3(2): 1-3.
[2] Iervolino I. Assessing uncertainty in estimation of seismic response for PBEE[J]. Earthquake Engineering & Structural Dynamics, 2017, DOI: 10.1002/eqe.2883.
[3] Shinozuka M, Feng M, Lee J, et al. Statistical analysis of fragility curves[J]. Journal of Engineering Mechanics, 2000, 126(12): 1224-1231.
[4] 王建民,朱晞. 地震作用下高架桥结构的脆弱性[J]. 中国公路学报, 2007, 20(1): 68-72.
Wang Jianmin, Zhu Xi. Fragility of viaduct structure under seismic effect [J]. China journal of highway and transport. 2007, 20(1): 68-72.
[5] Mackie K and Stojadinovic B. Probabilistic seismic demand model for California highway bridges[J]. Journal of Bridge Engineering, 2001, 6(6): 468-481.
[6] Nielson B and Desroches R. Analytical seismic fragility curves for typical bridges in the central and southeastern United States[J]. Earthquake Spectra, 2007, 23(3): 615-633.
[7] Aygun B, Duenas-Osorio L, Padgett J E, et al. Efficient Longitudinal Seismic Fragility Assessment of a Multispan Continuous Steel Bridge on Liquefiable Soils[J]. Journal of Bridge Engineering, 2011, 16(1): 93-107.
[8] Pan Y, Agrawal A K, and Ghosn M. Seismic Fragility of Continuous Steel Highway Bridges in New York State[J]. Journal of Bridge Engineering, 2007, 12(6): 689-699.
[9] Tubaldi E, Barbato M, and Dall’asta A. Influence of Model Parameter Uncertainty on Seismic Transverse Response and Vulnerability of Steel–Concrete Composite Bridges with Dual Load Path[J]. Journal of Structural Engineering, 2012, 138(3): 363-374.
[10] Padgett J E and Desroches R. Sensitivity of seismic response and fragility to parameter uncertainty[J]. Journal of Structural Engineering, 2007, 133(12): 1710-1718.
[11] Wang Z, Padgett J E, and Dueñas-Osorio L. Toward a uniform risk design philosophy: Quantification of uncertainties for highway bridge portfolios[C]. in Proceedings of 7th national seismic conference on bridges & highways. 2013. Oakland.
[12] Pang Y, Wu X, Shen G, et al. Seismic Fragility Analysis of Cable-Stayed Bridges Considering Different Sources of Uncertainties[J]. Journal of Bridge Engineering, 2014, 19(4): 04013015.
[13] 徐略勤, 李建中. 基于修正滑移刚体模型的挡块抗震强度预测及其应用[J]. 振动与冲击, 2014, 33(17): 55-61.
Xu Lüeqin, Li Jianzhong. Seismic strength prediction and its application of reinforced concrete retainers based on modified rigid body sliding model[J]. Journal of Vibration and Shock, 2014, 33(17): 55-61
[14] 徐略勤, 李建中. 新型滑移挡块的设计、试验及防震效果研究[J]. 工程力学, 2016(2): 111-118.
Xu Lüeqin, Li Jianzhong. Design and experimental investigation of a new type sliding retainer and its efficacy in seismic fortification. Engineering Mechanics, 2016, 33(2): 111-118.
[15] Mazzoni S, Mckenna F, Scott M H, et al. The Open System for Earthquake Engineering Simulation (OpenSEES) User Command-Language Manual[R]. 2006.
[16] Ellingwood B and Kinali K. Quantifying and communicating uncertainty in seismic risk assessment[J]. Structural Safety, 2009, 31(2): 179-187.
[17] 于晓辉. 钢筋混凝土框架结构的概率地震易损性与风险分析[D]. 哈尔滨: 哈尔滨工业大学, 2012.
YU Xiaohui. Probabilistic seismic fragility and risk analysis of reinforced concrete frame structures[D]. Harbin: Harbin Institute of Technology, 2012.
[18] 中华人民共和国交通部. 公路桥涵设计通用规范 (JTG D60)[M].北京: 人民交通出版社, 2004.
MINISTRY of Communications of PRC. General code for design of Highway bridges and culverts (JTG D60) [M]. Beijing:China Communications Press, 2004.
[19] 中华人民共和国交通部部. 公路桥梁抗震设计细则 (JTG/TB02-01)[M]. 北京:人民交通出版社,2008.
MINISTRY of Communications of PRC. Guidelines for Seismic Design of Highway Bridges (JTG/TB02-01) [M]. Beijing:China Communications Press, 2008.
[20] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范(GB 50010)[M].北京: 中国建筑工业出版社, 2010,
MINISTRY of Construction of PRC. Code for design of concrete structures (GB 50010) [M]. Beijing: China Architecture & Building Press, 2010.
[21] 李杨海. 公路桥梁支座实用手册[M]. 北京: 人民交通出版社, 2008.
Li Yanghai. Practical manual of highway bridge bearings [M]. Beijing: China Communications Press,2008.
[22] 李冲, 王克海, 李悦等. 板式橡胶支座摩擦滑移抗震性能试验研究[J]. 东南大学学报 (自然科学版), 2014, 44(1): 162-167.
Li Chong,Wang Kehai, Li Yue, et al. Experimental study on seismic performance of laminated rubber bearings with friction slipping[J]. Journal of Southeast University (Natural Science Edition),2014,44(1): 162-167.
[23] Shamsabadi A, Rollins K M, and Kapuskar M. Nonlinear soil–abutment–bridge structure interaction for seismic performance-based design[J]. Journal of geotechnical and geoenvironmental engineering, 2007, 133(6): 707-720.
[24] Fema. Quantification of Building Seismic Performance Factors[R]. 2009, Applied Technology Council, Federal Emergency Management Agency: Washington, D.C.
[25] Celik O C and Ellingwood B R. Seismic fragilities for non-ductile reinforced concrete frames–Role of aleatoric and epistemic uncertainties[J]. Structural Safety, 2010, 32(1): 1-12.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}