伺服阀用超磁致伸缩致动器弓张结构设计与研究

郑佳伟1,何忠波1,李冬伟1,荣策1,杨朝舒2,薛光明1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (24) : 30-37.

PDF(2488 KB)
PDF(2488 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (24) : 30-37.
论文

伺服阀用超磁致伸缩致动器弓张结构设计与研究

  • 郑佳伟1,何忠波1,李冬伟1,荣策1,杨朝舒2,薛光明1
作者信息 +

A design and study on the bow-type structure of a giant magnetostrictive actuator for servo valves

  • ZHENG Jiawei1,HE Zhongbo1,LI Dongwei1,RONG Ce1,YANG Zhaoshu2,XUE Guangming1
Author information +
文章历史 +

摘要

为满足电液伺服阀的驱动要求,解决超磁致伸缩制动器(GMA)体积大小与输出位移大小相互制约问题,提出了一种弓张结构用于GMA输出位移的放大;利用理论力学、材料力学理论,拉格朗日动力学方程及有限元仿真方法对弓张结构的动力学特性、位移放大倍数及其主要结构尺寸参数对位移放大倍数影响进行了分析;在上述基础上制作了弓张放大式GMA样机,搭建了实验测试系统,进行了正弦激励和扫频特性实验,完成了模型的验证。实验结果表明:正弦激励下,弓张结构的放大倍数在10.3~11.1之间波动,与理论计算值相吻合;扫频试验下,弓张放大式GMA最大波峰约在108Hz处,与理论计算相符,其频带宽度可达到100Hz,能够满足伺服阀输出特性要求。

Abstract

To meet the driving requirements of electro-hydraulic servo valves and solve the restriction between the size and the output displacement of the GMA, a bow-type structure was designed to amplify its output displacement.Through theoretical mechanics, material mechanics theory, the Lagrange’s dynamical equation and the finite element simulation method, the dynamic characteristics, displacement magnification of bow-type structure and the influence of its main structure size parameters on the displacement magnification were analyzed.The GMA with bow-type structure prototype was manufactured, the experimental system was established and the proposed model was verified by sweep and sinusoidal experiments.The results show that under sinusoidal excitation, the magnification of the bow-type structure fluctuated between 10.3 and 11.1, which was in agreement with the theoretical calculation.Under the sweep test, the maximum peak of GMA with bow-type structure was about 108 Hz, which was consistent with the theoretical calculation, and its bandwidth could reach 100 Hz, which could satisfy the servo valve output characteristic requirement.

关键词

超磁致伸缩材料 / 弓张结构 / 致动器 / 有限元仿真 / 伺服阀

Key words

giant magnetostrictive material / bow-type structure / actuator / finite element simulation / servo valve

引用本文

导出引用
郑佳伟1,何忠波1,李冬伟1,荣策1,杨朝舒2,薛光明1. 伺服阀用超磁致伸缩致动器弓张结构设计与研究[J]. 振动与冲击, 2018, 37(24): 30-37
ZHENG Jiawei1,HE Zhongbo1,LI Dongwei1,RONG Ce1,YANG Zhaoshu2,XUE Guangming1. A design and study on the bow-type structure of a giant magnetostrictive actuator for servo valves[J]. Journal of Vibration and Shock, 2018, 37(24): 30-37

参考文献

[1] 郭咏新,张 臻,王贞艳,等. 超磁致伸缩作动器的率相关振动控制实验研究[J]. 振动与冲击,2015,32(12):51-57.
GUO Yong-xin, ZHANG Zhen, WANG Zhen-yan,et al. Experiment investigation on rate-dependent vibration control of giant magnetostrictive actuators[J]. Journal of Vibration and Shock, 2015, 32(12): 51-57.
[2] 贾振元,郭东明. 超磁致伸缩微位移执行器原理与应用[M]. 北京:科学出版社,2008.
[3] 杨朝舒,何忠波,白鸿柏,等.柔性铰链放大式超磁致伸缩致动器磁弹耦合模型[J].航空动力学报,2015,30(6):1498-1506.
YANG Zhao-shu, HE Zhong-bo, BAI Hong-bai, et al. Magnetic –elastic coupled model of giant magnetostrictive actuator with flexure-hinges amplifier[J]. Journal of Aerospace Power, 2013, 30(6): 1498-1506.
[4] Olabi A G, Grunwald A. Design and application of magnet- ostrictive materials[J]. Materials & Design. 2008, 29: 469-483.
[5] Wang T, Zhou Y. Nonlinear dynamic model with multi-fields coupling effects for giant magnetostrictive actuators[J]. International Journal of Solid Structures. 2013(50): 2970-2979.
[6] 杨理华,李践飞,吴海平,等. 超磁致伸缩作动器非线性模型辨识研究[J]. 振动与冲击,2015,34(18):142-146.
YANG Li-hua, LI Jian-fei, WU Hai-ping, et al. Parameter identification of nonlinear model of giant magnetostrictive actuator[J]. Journal of Vibration and Shock, 2015, 34(18):142-146.
[7] 邱大龙,田东林,刘 浩,等. 基于GMM直动阀位移放大机构的结构研究[J]. 液压与气动,2013,25(11):90-93.
QIU Da-long, TIAN Dong-lin, LIU Hao, et al. Research on structures for displacement amplifier of direct-acting valve based on GMM[J]. Journal of Hydraulic and Pneumatic, 2013, 25(11):90-93.
[8] 杨理华,李践飞,吴海平,等. 超磁致伸缩作动器非线性模型辨识研究[J]. 振动与冲击,2015,34(18):142-146.
YANG Li-hua, LI Jian-fei, WU Hai-ping, et al. Parameter identification of nonlinear model of giant magnetostrictive actuator[J]. Journal of Vibration and Shock, 2015, 34(18):142-146.
[9] 朱玉川,李跃松. 超磁致伸缩执行器驱动的新型射流伺服阀[J]. 压电与声光,2010,32(4):574-577.
ZHU Yu-chuan,LI Yue-song. A novel jet pipe serve valve driven by giant magnetostrictive actuator[J]. Piezoelectrics & Acoustooptics, 2010, 32(4): 574-577.
[10] Tanaka H, Urai T. Development of a giant magnetostrictive tandem actuator and the application to a servo valve[J]. Trans. ISCIE. 2001, 14(3): 110-116.
[11] 王春行. 液压控制系统[M]. 北京:机械工业出版社,2012.
[12] 孙 涛,李国平,娄军强,等. 基于柔性铰链的新型快速伺服刀架设计[J]. 振动与冲击,2016,35(13):160-166.
SUN Tao, LI Guo-ping, LOU Jun-qiang, et al. Design of a new fast servo tool based flexible hinges[J]. Journal of Vibration and Shock, 2016, 35(13): 160-166.
[13] 林 超,俞松松,陶桂宝,等. 微/纳米定位平台的桥式机构静、动态优化设计[J]. 浙江大学学报:工学版,2012,46(6):1068-1073.
LIN Chao, YU Song-song, TAO Gui-bao, et al. Static and dynamic optimal design of bridge-type mechanism of micro/nano- positioning piatform[J]. Journal of Zhejiang University: Engneering Science, 2012, 46(6): 1068-1073.
[14] MA Hong-wen, YAO Shao-ming, WANG Li-quan, et al. Analysis of the displacement amplification ratio of bridge-type flexiure hinge[J]. Science Direct. 2006,730-736.
[15] QI Ke-qi, XIANG Yang, FANG Chao, et al. Analysis of the displacement amplification ratio of bridge-type mechanism[J]. Mechanism and Machine Theory. 2015,45-56.
[16] 杜志元,闫鹏. 基于桥式放大机构的柔顺微定位平台的研究[J]. 机器人,2016,38(2):185-192.
DU Zhi-yuan, YAN Peng. Analysis on compliant micro positioning stage based on bridge-type amplification mechanism[J]. Robot, 2016, 38(2): 185-192.
[17] 俞军涛,焦宗夏,吴帅. 基于液压微位移放大结构的新型压电陶瓷直接驱动阀设计及仿真[J]. 机械工程学报,2013,49(2):151-158.
YU Jun-tao, JIAO Zong-xia,WU Shuai. Design and simulation study on new servo valve direct by piezoelectric actuator using hydraulic amplification[J]. Joumal of Mechanical Engineering, 2013, 49(2): 151-158.
[18] 马 立,谢 炜,刘 波,等. 柔性铰链定位平台的设计[J]. 光学 精密工程,2014,22(2):338-345.
MA Li, XIE Wei, LIU Bo, et al. Design of micro-positioning stage with flexible hinges[J]. Optics and Precision Engneering, 2014, 22(2): 338-345.
[19] 林 超,才立忠,纪久祥,等. 多维微传动平台设计及基于RPY角的运动特性分析[J]. 华南理工学报:自然科学版,2014,42(9):46-52.
LIN Chao, CAI Li-zhong, JI Jiu-xiang, et al. Multidimensional Micro Transmission Platform Design and RPY Angle-Based Movement Characteristic Analysis [J].Joumal of South china university of technology: Natural Science Edition, 2014, 42(9): 46-52.
[20] 赵正龙,何忠波,李东伟,等. 骨导耳听器发音振子的弓张结构设计仿真研究[J]. 计算机仿真,2016,33(5):235-239.
ZHAO Zheng-long, HE Zhong-bo,LI Dong-wei, et al. Analysis and research on the bow-type structure of GMM pronunciation vibrator[J]. Joumal of Computer Simulation, 2016, 33(5): 235-239.
[21] 王新华,王思民,李伟,等. 双相对位置超磁致伸缩自传感驱动直接力反馈伺服阀[P]. 2009.
[22] 曲兴田,董景石,郭俊臣,等. 基于柔性铰链放大的压电堆叠泵[J]. 吉林大学学报:工学版,2008,38(3):552-556.
QU Xing-tian, DONG Jing-shi, GUO Jun-chen, et al. Piezelectric stack pump based on flexiure hinge magnification[J]. Journal of Jilin University: Engneering and Technology Edition, 2008, 38(3): 552-556.
[23] Karunanidhi S, Singaperumal M. design, analysis and simul- ation of magnetostrictive actuator and its application to high dynamic valve[J]. Sensors And Actuators A: Physical. 2010.
[24] 王寅. 多模式压电直线电机的研究[D]. 南京:南京航空航天大学,2013.
WANG Yin. Research on multi-mode piezoelectric linear motors[D]. Nan Jing: Nanjing University of Aeronautics and Astronautics, 2013.
[25] 丁冰晓. 平面三自由度并联微操作平台的设计与分析[D]. 南京:南京航空航天大学,2013.
DING Bing-xiao. Design and analysis a 3-DOF compliant parallel micro-manipulation stage[D]. Tian Jin: Tianjin University of Technology, 2015.
[26] 王兴松,王湘江,毛燕. 基于超磁致伸缩材料的折弯型压曲放大机构设计、分析与控制[J]. 机械工程学报,2007,43(11):27-33.
WANG Xing-song, WANG Xiang-jiang, MAO Yan. Design, analysis and control of novel pressing and bending magnifying mechanism driven by giant magnetostrictive material[J]. Joumal of Mechanical Engineering, 2007, 43(11): 27-33.

PDF(2488 KB)

Accesses

Citation

Detail

段落导航
相关文章

/