提出极点配置方法设计分流扬声器电路参数,从而实现管道噪声控制。首先建立管道-扬声器耦合的数学模型以及分流扬声器数学模型,并求解得到分流扬声器控制系统的极点特征方程。运用主导极点的性质,推导出最佳的电阻值和电感值。并且通过数值计算分析分流扬声器在不同位置时的控制效果,从而分析得到最佳的分流扬声器位置。最后通过实验初步验证了所设计的分流扬声器控制管道噪声的效果。从数值计算和实验的结果中可以看出:通过极点配置方法设计的分流扬声器电路参数以及分流扬声器位置对管道噪声的控制效果良好。
Abstract
The shunt loudspeaker is imposed to control the duct noise.The shunt circuit of the loudspeaker was optimized by using the pole placement method.First, the duct-loudspeaker coupling model as well as the shunt loudspeaker model was built up.Then the characteristic equation of the shunt loudspeaker control system pole was obtained.Considering dominant pole feature, the optimal parameters value of resistances and inductances were obtained.Meanwhile, the location of the shunt loudspeaker effect on the control performance was discussed in detail, and the optimal shunt loudspeaker locations for different target modes were presented.Finally, the duct noise control using shunt loudspeaker was experimentally verified.The numerial and experimental results show that the parameters of shunt loudspeaker circuit can be optimized by using the pole placement method.
关键词
极点配置方法 /
分流扬声器 /
最优值 /
管道噪声控制 /
实验
{{custom_keyword}} /
Key words
pole placement method /
shunt loudspeaker /
optimal value /
noise control /
experiment
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 史东伟, 冯声振, 邱小军. 有源吸声尖劈的实验研究[J]. 声学技术, 2009, 28(6): 773-777.
SHI Dongwei, FEI Shengzhen, QIU Xiaojun. Experimetal study of active acoustic wedge[J]. Technical Acoustics, 2009, 28(6): 773-777.
[2] Zhang Y, Chan Y, Huang L. Thin broadband noise absorption through acoustic reactance control by electro-mechanical coupling without sensor[J]. The Journal of the Acoustical Society of America, 2014, 135(5): 2738-2745.
[3] Tao J, Jiao Q, Qiu X. Sound absorption of a finite micro-perforated panel backed by a shunted loudspeaker[J]. The Journal of the Acoustical Society of America 2014, 135(1): 231-238.
[4] Tao J, Jiao Q, Qiu X. A composite sound absorber with micro-perforated panel and shunted loudspeaker[C]// Proceedings of Meetings on Acoustics. Acoustical Society of America, 2013, 19(1): 015068.
[5] Fleming A J, Niederberger D, Moheimani S O R, et al. Control of resonant acoustic sound fields by electrical shunting of a loudspeaker[J]. Control Systems Technology, IEEE Transactions on, 2007, 15(4): 689-703.
[6] Lissek H, Boulandet R. Design of shunt electric networks in view of sound absorption with loudspeakers[C]// Forum Acusticum. OAI, 2011.
[7] Rivet E, Boulandet R, Lissek H. Optimization of electroacoustic resonators for semi-active room equalization in the low-frequency range[J]. Journal of the Acoustical Society of America, 2013, 133(5):3348.
[8] Černík M, Mokrý P. Sound reflection in an acoustic impedance tube terminated with a loudspeaker shunted by a negative impedance converter[J]. Smart Materials and Structures, 2012, 21(11): 115016.
[9] Lissek H. Electroacoustic metamaterials: achieving negative acoustic properties with shunt loudspeakers[C]// Proceedings of Meetings on Acoustics. Acoustical Society of America, 2013, 19(1): 030023.
[10] Pietrzko S, MAO Q. Noise reduction in a duct using passive/semiactive shunt loudspeakers[C]// The 16th International Congress on Sound and Vibration, Kraków, Poland. 2009: 5-9.
[11] Boulandet R, Lissek H. Toward broadband electroacoustic resonators through optimized feedback control strategies[J]. Journal of Sound & Vibration, 2014, 333(20):4810-4825.
[12] Hagood N W, Flotow A V. Damping of structural vibrations with piezoelectric materials and passive electrical networks[J]. Journal of Sound & Vibration, 1991, 146(2):243-268.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}