高阶局部投影算法及其在滚动轴承故障诊断中的应用

吕勇,施威,易灿灿

振动与冲击 ›› 2018, Vol. 37 ›› Issue (3) : 147-152.

PDF(747 KB)
PDF(747 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (3) : 147-152.
论文

高阶局部投影算法及其在滚动轴承故障诊断中的应用

  • 吕勇,施威,易灿灿
作者信息 +

Higher-order local projective algorithm and its application in rolling bearing fault diagnosis

  • LÜ Yong, SHI Wei, YI Can-can
Author information +
文章历史 +

摘要

针对局部投影降噪算法中邻域相点的质心选取问题,分析了邻域质心的选取对降噪效果所产生的影响。提出了一种高阶邻域质心的选取方法,利用高阶多项式对邻域质心进行了更为精确地估计,更好地适应了吸引子的几何形状,进一步抑制了噪声,提升了局部投影算法的降噪效果。通过数值仿真信号进行了验证,并与同样基于相空间重构的非线性时间序列降噪方法做了对比,说明了高阶局部投影算法的优越性。最后将其运用于工业现场的风机轴承故障诊断中,从频域成功地提取出了滚动轴承的故障特征。

Abstract

In order to deal with mass centroid selection of phase points in neighbor zones for the local projective noise reduction algorithm, the influences of neighbor zone mass centroid selection on noise reduction effects were analyzed. Higher-order polynomials were used to estimate neighbor zone mass centroid more accurately and better adapt to geometric shape of the attractor. In this way, the noise was further suppressed, noise reduction effects of the local projective method was improved. Numerical simulation signals were used to verify its effectiveness. The superiority of the higher-order local projective algorithm was revealed by comparing it with other nonlinear time series noise reduction methods based on phase space reconstruction. Finally, the proposed method was adopted in fault diagnosis of industrial fans’ bearings, fault features of rolling bearings were extracted successfully in frequency domain.

关键词

高阶局部投影 / 降噪 / 质心 / 非线性时间序列 / 故障诊断

Key words

higher-order local projection / noise reduction / mass centroid / nonlinear time series / fault diagnoses

引用本文

导出引用
吕勇,施威,易灿灿. 高阶局部投影算法及其在滚动轴承故障诊断中的应用[J]. 振动与冲击, 2018, 37(3): 147-152
Lü Yong, SHI Wei, YI Can-can. Higher-order local projective algorithm and its application in rolling bearing fault diagnosis[J]. Journal of Vibration and Shock, 2018, 37(3): 147-152

参考文献

[1] 阳建宏, 徐金梧, 吕勇, 等. 基于相重构和主流形识别的非线性时间序列降噪方法 [J]. 北京科技大学学报, 2005,27(5):631-634.
YANG Jian-hong, XU Jin-wu, LÜ Yong, et al. Nonlinear time series noise reduction method based on phase reconstruction and principal manifold learning [J].Journal of Beijing University of Science and Technology, 2005,27(5):631-634.
[2] Cawley R, Hsu G H. Local-geometric-projection method for noise reduction in chaotic maps and flows [J]. Physical Review A, 1992,46(6):3057-3082.
[3] Sauer T. A noise reduction method for signals from nonlinear systems.Physical D,1992,58(1):193-201.
[4] Kantz H, Schreiber T. Nonlinear Time Series Analysis [M]. Cambridge University Press, Cambridge, 2003.
[5] 吕志民, 张武军, 徐金梧. 基于奇异谱的降噪方法及其在故障诊断技术中的应用 [J]. 机械工程学报, 2000,35(3):95-99.
LÜ Zhi-min, Zhang Wu-jun, XU Jin-wu. A noise reduction method based singular spectrum and its application in machine fault diagnosis [J].Journal of Mechanical Engineering, 2000,35(3):95-99.
[6] 徐金梧, 吕勇, 王海峰. 局部投影算法及其在非线性时间序列分析中的应用 [J]. 机械工程学报, 2003,39(9):146-150.
XU Jin-wu, LÜ Yong, WANG Hai-feng. Local projective method and its application on nonlinear time series [J].Journal of Mechanical Engineering,2003,39(9): 146-150.
 [7] 阳建宏, 徐金梧, 杨德斌, 等. 邻域自适应选取的局部投影非线性降噪方法 [J]. 振动与冲击, 2006,25(4 ):64-67.
YANG Jian-hong, XU Jin-Wu, YANG De-bin, et al. Nonlinear noise reduction method by local adaptive neighborhood selection [J].Journal of Vibration and Shock, 2006,25(4 ):64-67.
[8] 韩敏, 刘云侠. 基于非线性约束的局部投影降噪 [J]. 电子与信息学报, 2009,31(2):400-404.
HAN Min, LIU Yun-xia. Local Projection noise reduction based on nonlinear constraints [J].Journal of Electronics and Information Technology,2009,31(2):400-404.
[9] Michael T J, Richard J P. Generalized phase space projection for nonlinear noise reduction [J]. Physica D, 2005,201(3-4):306-317.
[10] Jevtić N, Stine P, Schweitzer J S. Nonlinear time series analysis of Kepler Space Telescope data:Mutually beneficial
progress [J]. Astron.Nachr, 2012,333(10):983-986 .
[11] Kotas M. Projective filtering of time warped ECG beats [J]. Computers in Biology and Medicine, 2008,38(1):121-137.
[12] Moore J M, Small M, Karrech A. Improvements to local projective noise reduction through higher order and multiscale refinements [J]. Chaos, 2015,25(6): 653-671.
[13] Takens F. Detecting strange attractors in turbulence [J]. Lecture Notes in Mathematics,1981, 898(1):366-381
[14] Chelidze D. Smooth local subspace projection for nonlinear noise reduction [J]. Chaos, 2014,24(1): 274-276.
[15] 余成义. 流形学习在混沌时间序列降噪中的应用[D]. 武汉: 武汉科技大学, 2012.

PDF(747 KB)

Accesses

Citation

Detail

段落导航
相关文章

/