空气夹层对含液结构在球形弹体侵彻作用下动态响应的影响

李营1,2,张玮1,朱海清2,杜志鹏1,吴卫国2,张磊1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (3) : 186-194.

PDF(3143 KB)
PDF(3143 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (3) : 186-194.
论文

空气夹层对含液结构在球形弹体侵彻作用下动态响应的影响

  • 李营1,2,张玮1,朱海清2,杜志鹏1,吴卫国2,张磊1
作者信息 +

Influences of air-contain structure on dynamic responses of liquid-filled structures under spherical projectile penetration

  • LI Ying1,2, ZHANG Wei1,ZHU Haiqing2,DU Zhipeng1,WU Weiguo2,ZHANG Lei1
Author information +
文章历史 +

摘要

基于一维应力波理论对高强水中冲击波在不同介质间的传播进行分析,提出了2种防护含液结构的空气夹层形式,建立了数值仿真模型。在验证数值仿真方法的基础上,分析了含液结构在弹体侵彻过程中空穴演化、冲击波传播、空气夹层结构变形等的动态变化过程及弹体速度衰减规律,讨论了不同舱室结构在球形弹体侵彻作用下的冲击波特点和结构不同组成部分的能量转换关系,对比了不同弹速下前后板的塑性变形。研究结果表明(1)在含液结构中添加空气夹层能有效降低含液结构前板和后板的冲量、能量和塑性变形;(2)空气夹层影响前后板变形的主要原因为阻抗失配和空气夹层变形引起的稀疏波及液体空化;(3)从整体看,双层间隔板结构衰减前后板变形能力优于方格夹层板结构,但随着弹速的增加,双层间隔夹层板的前后壁变形相互制约,2种结构对含液塑性变形的改变逐渐接近。

Abstract

Based on the one-dimensional stress wave theory, two kinds of air-contain structures were presented. Their numerical simulation models were established. Based on verifying these simulation models, the dynamic change processes of cavity evolution, shock wave propagation and air-contain structure deformation for a liquid-filled structure with air-contain structures under projectile penetration were analyzed, the decay law of projectile velocity was studied. Shock wave features of different cabin structures under spherical projectile penetration and energy transfer relations among different parts of cabin were discussed. The plastic deformations of front plate and rear one under different projectile velocities were compared. The study results showed that air-contain structures added in a liquid-filled structure can effectively reduce impulse, energy and plastic deformation of both front plate and rear one of the liquid-filled structure; the cause of air-contain structures affecting deformations of front plate and rear one is impedance mismatch, expansion wave due to air-interlayer deformation and liquid cavitation; double-layer plate structure’s ability to reduce deformation of liquid-filled structures is superior to that of square sandwich plate one, but with increase in projectile velocity, their difference drops gradually. 
 

关键词

空气夹层 / 含液结构 / 液舱 / 水锤效应 / 高速弹体 / 侵彻

Key words

air-contain structure

/ liquid-filled structure / liquid tank / water hammer effect / high velocity projectile / penetration

引用本文

导出引用
李营1,2,张玮1,朱海清2,杜志鹏1,吴卫国2,张磊1. 空气夹层对含液结构在球形弹体侵彻作用下动态响应的影响[J]. 振动与冲击, 2018, 37(3): 186-194
LI Ying1,2, ZHANG Wei1,ZHU Haiqing2,DU Zhipeng1,WU Weiguo2,ZHANG Lei1. Influences of air-contain structure on dynamic responses of liquid-filled structures under spherical projectile penetration[J]. Journal of Vibration and Shock, 2018, 37(3): 186-194

参考文献

[1]Varas D, López-Puente J, Zaera R. Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact [J]. International Journal of Impact Engineering, 2009, 36(1): 81-91.
[2]Townsend D, Park N, M.Devall P. Failure of Fluid Filled Structure Due to High Velocity Fragment Impact[J]. International Journal of Impact Engineering, 2003, 29: 723-733.
[3]Birkhoff G, Zarantonello E H. Jets,Wakes,And Cavities[M]. New York: Academic Press, 1957.
[4]Burt F S. Hydrodynamic research[J]. British Journal of Applied Physics, 1961, 12(323-328).
[5]Morse C R, Stepka F S. Effect of projectile size and material on impact fracture of walls of liquid-filled tanks[R]. Cleveland,Obio, 1966.
[6]Chou P C, Schaller R, Hoburg J. Analytical study of the fracture of liquid-filled tanks impacted by hypervelocity particles[R]. Washington, D C: National Aeronautics and Space Administration, 1967.
[7]Deletombe E, Fabis J, Dupasn J, et al. Experimental analysis of 7.62mm hydrodynamicram in containers[J]. JournalofFluidsandStructures, 2013, 37: 1-21.
[8]Disimile P J, Davis J, Toy N. Mitigation of shock waves within a liquid filled tank[J]. International Journal of Impact Engineering, 2011, 38: 61-72.
[9]李亚智,陈钢. 充液箱体受弹丸撞击下动态响应的数值模拟[J]. 机械强度, 2007, 29(1): 143-147.
LI Yazhi, CHEN Gang. Numerial simulation of liquid-filled tank response to projectile impact[J].Journal of Mechanical Strength, 2007, 29(1): 143-147.
[10]Zhang A, Ming F, Cao X, et al. Protective Design of a Warship Broadside Liquid Cabin[J]. J Marine Sci Appl, 2011, 10: 437-446.
[11]李营,吴卫国,郑元洲,等. 舰船防护液舱吸收爆炸破片的机理[J]. 中国造船, 2015, 56(2): 38-44.
LI Ying, WU Weiguo, ZHANG Yuanzhou, et al.Study on mechanism of explosive fragments absorbed by vessel protective tank[J].Shipbuilding of China,2015, 56(2): 38-44.
[12]蔡斯渊,侯海量,吴林杰. 设置隔舱对防雷舱液舱防护能力的影响[J]. 哈尔滨工程大学学报, 2016,37(4):1-6.
CAI Siyuan, HOU Hailiang, WU Linjie. Installed interlayer’s influence on defensive efficiency of warship’s defensive liquid cabin[J]. Journal of Harbin Engineering University, 2016,37(4):1-6.
[13]Meyers M. A. 材料的动力学行为[M]. 国防工业出版社, 2006年10月.
[14]Johnson G R, Cook W H. A Constitutive Model and Data for Metals Subjected to Large strains,High Strain Rates and High Temperature[C]. Proceedings of the seventh international symposium on ballistics, Netherland. 1983.
[15]Johnson G R, Cook W H. Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures[J]. Engineering Fracture Mechanics, 1985, 21: 31-48.
[16]Varas D, Zaera R, López-Puente J. Numerical modelling of the hydrodynamic ram phenomenon[J]. International Journal of Impact Engineering, 2009, 36(3): 363-374.
[17]李营,张磊,朱海清,等. 爆炸破片在液舱中的速度衰减特性研究[J]. 中国造船, 2016, 59(1):127-137.
LI Ying, ZHANG Lei, ZHU Haiqing, et al. Velocity Attenuation of Blast Fragments in Water Tank[J].Shipbuilding of China, 2016, 59(1):127-137.
[18] Cole R H. Underwater explosion[M]. Princeton: Princeton University Press, 1948.

PDF(3143 KB)

566

Accesses

0

Citation

Detail

段落导航
相关文章

/