高度可调式抗侧倾液压互联悬架建模及控制策略研究

赵贺雪1,张邦基1,张农1,2,彭鹏1,郑敏毅1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (3) : 202-209.

PDF(1290 KB)
PDF(1290 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (3) : 202-209.
论文

高度可调式抗侧倾液压互联悬架建模及控制策略研究

  • 赵贺雪1,张邦基1,张农1,2,彭鹏1,郑敏毅1
作者信息 +

Modeling and control strategy for a height adjustable and anti-roll hydraulically interconnected suspension

  • ZHAO Hexue1, ZHANG Bangji1, ZHANG Nong1,2, PENG Peng1, ZHENG Minyi1
Author information +
文章历史 +

摘要

针对被动液压互联悬架不能主动适应路况变化,提出一种能够调节车身高度的液压互联悬架系统。通过优化系统参数,使装有液压互联悬架车辆的垂向刚度基本和原车一致;采用分层控制理论进行车身高度调节的切换控制策略研究;基于CarSim、AMESim和Matlab/Simulink三个平台,搭建包含整车多体动力学模型和控制模型的联合仿真系统,并对切换过程、平顺性和操纵稳定性进行仿真分析。结果表明,该系统能够在不降低车辆平顺性的前提下,实现车身高度的按需调节,同时提高车辆的操纵稳定性。
 

Abstract

A height adjustable hydraulically interconnected suspension was proposed for actively adapting  road condition changes. Parameters of the hydraulically interconnected suspension were optimized to make the vertical stiffness of a vehicle with this suspension keep the same as that of the original vehicle. Based on the hierarchical control theory, a switching control strategy for the height adjusting of vehicle body was adopted. based on CarSim, AMESim and Matlab/Simulink simulation platforms,a joint simulation system including a vehicle multi-body dynamic model and a control model was established. The simulation analyses for switching processes, ride comfort and handling stability were performed. The results indicated that this system is able to adjust adaptively the height of vehicle body, and improve the handling stability of vehicle, in the premise of  simultaneously keeping vehicle’s ride comfort.
 
 

关键词

液压互联悬架 / 高度调节 / 平顺性

Key words

hydraulically interconnected suspension / height adjustment / ride comfort

引用本文

导出引用
赵贺雪1,张邦基1,张农1,2,彭鹏1,郑敏毅1. 高度可调式抗侧倾液压互联悬架建模及控制策略研究[J]. 振动与冲击, 2018, 37(3): 202-209
ZHAO Hexue1, ZHANG Bangji1, ZHANG Nong1,2, PENG Peng1, ZHENG Minyi1. Modeling and control strategy for a height adjustable and anti-roll hydraulically interconnected suspension[J]. Journal of Vibration and Shock, 2018, 37(3): 202-209

参考文献

[1] Hawley J B. Shock absorber and the like for vehicles. U.S. 1647518[P], 1927-11-01.
[2]  Wilde J R, Heydinger G J, Guenther D A, et al. Experimental evaluation of fishhook maneuver performance of a kinetic suspension system [J]. SAE transactions, 2005, 114(6): 387-396.
[3] Cao D P, RAKHEJA S, SU C. Comparison of roll properties of hydraulically and pneumatically interconnected suspensions for heavy vehicles. SAE Technical Papers: 2005.
[4] Cao D, Rakheja S, Su C Y. Pitch attitude control and braking performance analysis of heavy vehicle with interconnected suspensions[R]. SAE Technical Paper, 2007.
[5] Zhang N, Smith W A, Jeyakumaran J. Hydraulically interconnected vehicle suspension: background and modelling [J]. Vehicle System Dynamics, 2010, 48(1): 17-40.
[6] Smith W A, Zhang N, Hu W. Hydraulically interconnected vehicle suspension: handling performance[J]. Vehicle System Dynamics, 2011, 49(1-2): 87-106.
[7] 邓兆祥. 一种抗侧倾汽车油气悬架的刚度分析及设计方法[J]. 重庆大学学报(自然科学版),1994,17(1): 67-74.
Deng Zhao-xiang. The siffness analysis and the design method of a kind automobile hyro-pneumatic suspension with high lateral stability[J]. Journal of Chongqing University(Natural Science Edition), 1994, 17(1): 67-74.
[8] 郭孔辉,卢荡,宋杰等.油气消扭悬架的试验与仿真[J]. 吉林大学学报(工学版),2008,04:753-757.
Guo Kong-hui, Lu Dang, Song Jie, et all. Test and simulation on hydro-pneumatic torsion eliminating suspension[J]. Journal of Jilin University (Engineering and Technology Edition) ,2008,04:753-757.
[9] 王增全,申焱华,杨珏. 连通式油气悬架数学模型及特性分析[J]. 农业工程学报,2012,05:60-65.
Wang Zeng-quan, Shen Yan-hua, Yang Jue. Mathematical model and characteristics analysis of interconnected hydro-pneumatic suspension [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012,05:60-65.
[10] 汪若尘,吴涛,孟祥鹏等. 液压互联消扭悬架系统研究[J]. 农业机械学报,2015,02:288-293.
Wang Ruo-chen, Wu Tao, Meng Xiang-peng, et all. Interconnected hydraulic torsion-elimination suspension system[J]. Transactions of the Chinese Society for Agricultural, 2015,02:288-293.
[11] Hong H, Wang L, Zheng M, et al. Handling analysisof  a vehicle fitted  with  roll-plane  hydraulically  interconnected suspension using  motion-mode energymethod[J].  SAE International Journal  of Passenger Cars-Mechanical Systems, 2014, 7(1): 48-57.
[12] 丁飞,张农,韩旭. 抗俯仰液压互联悬架三轴重型货车动态特性[J]. 汽车工程学报,2011,05:415-423.
      Ding F, Zhang N, Han X. Dynamic characteristics ofa  tri-axle  heavy  truck fitted hydraulically anti-pith interconnected  suspension [J]. Chinese  Journal of Automotive Engineering, 2011, 1(4): 415-423.
 [13] Crolla  D  A,  Horton  D N  L,  Pitcher R H, et al. Active suspension control for an off-road vehicle [J].Proceedings   of  the  Institution  of  MechanicalEngineers, Part D:Journal of Automobile Engineering,1987, 201(1): 1-10.
[14] Wang L F.  Motion-mode  energy  method and  its implementation   based   on   active  hydraulically interconnected suspension[D].University of Technology,Sydney, 2013.
[15] 邵欣欣,杜海平,张农等. 液压互联悬架模糊切换控制设计以及试验验证[J]. 汽车工程学报,2014,02:99-108.
    Shao Xin-xin, Du Hai-ping, Zhang Nong, et all. Switched fuzzy control of hydraulically interconnected suspension with experimental validation[J].Chinese Journalof Automotive Engineering, 2014,02:99-108.
 [16] Yao Q L, Zhang X J, Guo K H, et al. Study on a dual-mode switchable  interconnected  suspension [J]. International Journal of Vehicle Design, 2014-78119.
[17] 曹旭阳,操林林,王殿龙. 半主动连通式油气悬架精确反馈线性化控制[J]. 中国机械工程,2016,04:560-567.
     Cao Xu-yang, Cao Lin-lin, Wang Dian-long. Exact linearization and feedback control of semi-active connected hydro-pneumatic suspension [J]. China Mechanical Engineering, 2016,04:560-567.
[18]  汪少华.半主动空气悬架混杂系统的多模式切换控制研究[D].镇江:江苏大学,2013.
    Wang Shao-hua. Research on multi-mode switching control of semi-active air suspension hybrid system[D]. Zhen Jiang: Jiangsu University,2013.

PDF(1290 KB)

Accesses

Citation

Detail

段落导航
相关文章

/